
A Type and Effect System for Atomicity

Cormac Flanagan Shaz Qadeer
HP Systems Research Center Microsoft Research

1501 Page Mill Road One Microsoft Way
Palo Alto, CA 94304 Redmond, WA 98052

ABSTRACT
Ensuring the correctness of multithreaded programs is dif-
ficult, due to the potential for unexpected and nondeter-
ministic interactions between threads. Previous work ad-
dressed this problem by devising tools for detecting race
conditions, a situation where two threads simultaneously
access the same data variable, and at least one of the ac-
cesses is a write. However, verifying the absence of such
simultaneous-access race conditions is neither necessary nor
sufficient to ensure the absence of errors due to unexpected
thread interactions.

We propose that a stronger non-interference property is
required, namely atomicity . Atomic methods can be as-
sumed to execute serially, without interleaved steps of other
threads. Thus, atomic methods are amenable to sequen-
tial reasoning techniques, which significantly simplifies both
formal and informal reasoning about program correctness.

This paper presents a type system for specifying and ver-
ifying the atomicity of methods in multithreaded Java pro-
grams. The atomic type system is a synthesis of Lipton’s
theory of reduction and type systems for race detection.

We have implemented this atomic type system for Java
and used it to check a variety of standard Java library classes.
The type checker uncovered subtle atomicity violations in
classes such as java.lang.String and java.lang.String-

Buffer that cause crashes under certain thread interleav-
ings.

Categories and Subject Descriptors
D.1.3 Concurrent Programming, parallel programming;
D.2.4 Software/Program Verification

General terms
Reliability, Security, Languages, Verification

Keywords
Multithreading, race conditions, static checking, atomicity

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLDI’03, June 9–11, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-662-5/03/0006 ...$5.00.

1. INTRODUCTION
Ensuring the correctness of multithreaded programs is dif-

ficult, due to the potential for unexpected and nondeter-
ministic interactions between threads. Previous work has
addressed this problem by devising type systems [18, 17]
and other static [19] and dynamic [35] checking tools for de-
tecting race conditions. A race condition occurs when two
threads simultaneously access the same data variable, and
at least one of the accesses is a write.

Unfortunately, verifying the absence of such simultaneous-
access race conditions is insufficient to ensure the absence of
errors due to unexpected thread interactions. To illustrate
this idea, consider the following method, in which the shared
variable x is protected by the lock l:

int x; // shared var guarded by lock l

void m() {

int t;

synchronized (l) { t = x; }

t++;

synchronized (l) { x = t; }

}

This method does not suffer from race conditions, a prop-
erty that can be easily verified with existing tools such as
rccjava [18]. However, the method may still not have the
expected effect of simply incrementing x that it would in a
sequential setting. In particular, if n calls to the method are
made concurrently, the overall effect may be to increment x
by any number between 1 and n.

We propose that a stronger non-interference property is
required, namely atomicity . If a method is atomic, then any
interaction between that method and steps of other threads
is guaranteed to be benign, in the sense that these interac-
tions do not change the program’s overall behavior. Thus,
having verified the atomicity of a method, we can subse-
quently specify and verify that method using standard se-
quential reasoning techniques, even though the scheduler is
free to interleave threads at instruction-level granularity.

We believe that a fundamental correctness property com-
mon to many interfaces in multithreaded programs is that
the methods of these interfaces are intended to be atomic.
Programmers have precise expectations regarding the meth-
ods that should be atomic, as illustrated by the documen-
tation for the class java.lang.StringBuffer in JDK1.4:

“String buffers are safe for use by multiple threads.
The methods are synchronized where necessary
so that all the operations on any particular in-
stance behave as if they occur in some serial order

福昕
高亮

福昕
高亮

that is consistent with the order of the method
calls made by each of the individual threads in-
volved.”

A methodology that supports concise specification and ef-
ficient checking of such expectations of atomicity would be
invaluable to both the implementor and the client of such an
interface. Unfortunately, existing checking methodologies
are unable to either formally specify or verify such expecta-
tions. Although the notions of atomicity and race-freedom
are closely related, race-freedom is not sufficient to prove
atomicity, as shown in the example above; it is also not nec-
essary, as we show in Section 1.1.

In this paper, we present a type system for specifying and
checking atomicity properties of methods in multithreaded
programs. Methods can be annotated with the keyword
atomic. The type system checks that for any (arbitrarily-
interleaved) execution, there is a corresponding serial exe-
cution with equivalent behavior in which the instructions
of the atomic method are not interleaved with instructions
from other threads.

To evaluate the utility of this atomic type system, we
implemented an atomic type checker for the full Java pro-
gramming language [23] and tested it on a variety of widely-
used Java library classes. We discovered a number of pre-
viously unknown defects, including subtle atomicity viola-
tions in java.lang.String and java.lang.StringBuffer

that cause crashes under certain interleavings. These errors
are not due to race conditions, and would be missed by a
race condition checker.

1.1 The need for atomicity
As an illustration of the problems that arise in multi-

threaded programming, consider the program shown below.
This program allocates a new bank account, and makes two
deposits into the account in parallel. This program is writ-
ten in the language ConcurrentJava, which is essentially
a multithreaded subset of Java extended with let and fork

constructs.

class Account {
int balance = 0;

int deposit1(int x) {
this.balance = this.balance + x;

}
}

let Account a = new Account in {
fork {a.deposit1(10)};
fork {a.deposit1(10)}

}

The program may exhibit unexpected behavior. In par-
ticular, if the two calls to deposit1 are interleaved, the final
value of balance may reflect only one of the two deposits
made to the account, which is clearly not the intended be-
havior of the program. That is, the program contains a
race condition: two threads attempt to manipulate the field
deposit1 simultaneously, with incorrect results.

We can fix this error by protecting the field balance by
the implicit lock of the account object and only accessing or
updating balance when that lock is held:

int deposit2(int x) {
synchronized (this) {

this.balance = this.balance + x;
}

}

The race condition checker rccjava [18] can detect the race
condition in the original bank account implementation and
can verify that the modified implementation is race-free.

In general, however, the absence of race conditions does
not imply the absence of errors due to thread interactions.
To illustrate this point, we extend the account implementa-
tion with two additional methods—readBalance1 to return
the current account balance and withdraw1 to take money
out of the account.

int readBalance1() { void withdraw1(int amt) {
int t; int b = readBalance1();
synchronize (this) { synchronize (this) {
t = balance; balance = b - amt;

}; }
return t; }

}

Even though there are no races in either method, the method
withdraw1 is not atomic and may not behave correctly. For
example, consider two concurrent transactions on the ac-
count —a withdrawal and a deposit— issued at a time when
the account balance is 10.

fork { withdraw1(10); }; // Thread 1

fork { deposit2(10); }; // Thread 2

We would expect an account balance of 10 after the pro-
gram terminates, but certain executions violate this expec-
tation. Suppose the scheduler first performs the call to
readBalance1 in Thread 1 which returns 10. The sched-
uler then switches to Thread 2 and completes the execution
of deposit2 ending with balance = 20. Finally, the sched-
uler switches back to Thread 1 and completes the execution
setting balance to 0. Thus, even though there are no races
in this program, unexpected interaction between the threads
can lead to incorrect behavior.

The account interface provided by the methods deposit2,
readBalance1, and withdraw1 is intended to be atomic, a
fundamental property common to many interfaces in multi-
threaded programs. A programmer using an atomic inter-
face should not have to worry about unexpected interactions
between concurrent invocations of the methods of the inter-
face. Our type system provides the means to specify and
verify such atomicity properties, thus catching errors such
as the one in withdraw1 above.

Having caught the error with our type system, we fix the
problem in withdraw1 as shown below. At the same time,
since readBalance1 performs a single read of a single-word
field, its synchronized statement is redundant, and we re-
move it.

int readBalance2() { void withdraw2(int amt) {
return balance; synchronize (this) {

} balance = balance - amt;
}

}

A race condition checker will report a race in readBalance2.
However, this warning is a false alarm as the race condition
is benign. Despite the presence of benign race conditions,
our type system can still verify that the methods deposit2,
readBalance2, and withdraw2 are atomic.

福昕
高亮

福昕
下划线

福昕
下划线

福昕
下划线

福昕
下划线

1.2 An overview of types for atomicity
As we have seen, although the notions of atomicity and

race-freedom are closely related, and both are commonly
achieved using locks, race-freedom is neither necessary nor
sufficient for ensuring atomicity.

We now present an overview of our type system for check-
ing atomicity. We allow any method to be annotated with
keyword atomic, and use the theory of right and left movers,
first proposed by Lipton [28], to prove the correctness of
atomic annotations.

An action a is a right mover if for any execution where the
action a performed by one thread is immediately followed
by an action b of a different thread, the actions a and b can
be swapped without changing the resulting state, as shown
below. Similarly, an action b is a left mover if whenever b
immediately follows an action a of a different thread, the
actions a and b can be swapped, again without changing the
resulting state.

s�
3�

s�
2�s�

1�

s�
1�

s‘�
2�

s�3�

a� b�

b� a�

The type system classifies actions as left or right movers as
follows. Consider an execution in which an acquire operation
a on some lock is immediately followed by an action b of a
second thread. Since the lock is already held by the first
thread, the action b neither acquires nor releases the lock,
and hence the acquire operation can be moved to the right of
b without changing the resulting state. Thus the type system
classifies each lock acquire operation as a right mover.

Similarly, consider an action a of one thread that is im-
mediately followed by a lock release operation b by a second
thread. During a, the second thread holds the lock, and a
can neither acquire nor release the lock. Hence the lock re-
lease operation can be moved to the left of a without chang-
ing the resulting state, and thus the type system classifies
lock release operations as left movers.

Finally, consider an access (read or write) to a shared
variable declared with the guard annotation guarded by l.
This annotation states that the lock denoted by expression
l must be held when the variable is accessed. Since our type
system enfores this access restriction, no two threads may
access the field at the same time, and therefore every access
to this field is both a right mover and a left mover.

To illustrate how the theory of movers enables us to verify
atomicity, consider a method that (1) acquires a lock (the
operation acq in the first execution trace in the diagram
below), (2) reads a variable x protected by that lock into a
local variable t (t=x), (3) updates that variable (x=t+1), and
then (4) releases the lock (rel). Suppose that the actions
of this method are interleaved with arbitrary actions E1,
E2, E3 of other threads. Because the acquire operation is
a right mover and the write and release operations are left
movers, there exists an equivalent serial execution where the
operations of the method are not interleaved with operations
of other threads, as illustrated by the following diagram.
Thus the method is atomic.

E1 E3t = xacq s8s′6
x = t+1 s′5s4s3s′2s1

acq E3E2 relt = xE1 x = t+1
s8s7s6s5s4s3s2s1

E2 s′7
rel

More generally, suppose a method contains a sequence of
right movers followed by a single atomic action followed by
a sequence of left movers. Then an execution where this
method has been fully executed can be reduced to another
execution with the same resulting state where the method
is executed serially without any interleaved actions by other
threads. Therefore, an atomic annotation on such a method
is valid.

The remainder of the paper describes our type system in
more detail. The following section presents a multithreaded
subset of Java, and Section 3 formalizes the atomic type
system for this Java subset. Section 4 describes the imple-
mentation of the atomic type system for the Java program-
ming language [23]; the application of this type checker to
a number of widely-used classes; and reports on atomicity
violations caught using this checker. Section 5 describes re-
lated work, and we conclude with Section 6. Appendix A
contains the full set of type rules for our system.

2. CONCURRENT JAVA
This section presents ConcurrentJava [18], a multi-

threaded subset of Java [23] that we use to formalize our
type system. ConcurrentJava supports multithreaded
programs by including the operation fork e which spawns
a new thread for the evaluation of e. This evaluation is per-
formed only for its effect; the result of e is never used. Locks
are provided for thread synchronization. As in Java, each
object has an associated lock that has two states, locked
and unlocked, and is initially unlocked. The expression
synchronized e1 e2 is evaluated in a manner similar to
Java’s synchronized statement: the subexpression e1 is eval-
uated first, and should yield an object, whose lock is then
acquired; the subexpression e2 is then evaluated; and finally
the lock is released. The result of e2 is returned as the
result of the synchronized expression. While evaluating e2,
the current thread is said to hold the lock. Any other thread
that attempts to acquire the lock blocks until the lock is re-
leased. A forked thread does not inherit locks held by its
parent thread.

The syntax of the synchronized and fork expressions and
the rest of ConcurrentJava is shown in Figure 1. A pro-
gram is a sequence of class definitions together with an ini-
tial expression. Each class definition associates a class name
with a class body consisting of a super class, a sequence of
field declarations, and a sequence of method declarations. A
field declaration includes an initialization expression and an
optional final modifier; if this modifier is present, then the
field cannot be updated after initialization. We use “[X]opt”
in grammars to denote either “X” or the empty string. A
method declaration consists of the method name, its return
type, number and types of its arguments, and an expression
for the method body. Types include class types, integers,
and long integers. Class types include class names intro-
duced by the program, as well as the predefined class Object,
which serves as the root of the class hierarchy. Expressions
include the typical operations for object allocation, field ac-
cess and update, method invocation, variable binding and
reference, conditionals, and loops, as well as the concurrency
primitives. Variables are bound by let-expressions, formal
parameter lists, and the special variable this is implicitly
bound by a class declaration and is in scope within the body
of that class.

福昕
高亮

福昕
下划线

福昕
下划线

福昕
高亮

福昕
高亮

福昕
下划线

福昕
高亮

福昕
下划线

福昕
下划线

福昕
高亮

福昕
下划线

福昕
下划线

福昕
下划线

福昕
下划线

P ::= defn∗ e (program)
defn ::= class cn body (class decl)
body ::= extends c

{ field∗ meth∗} (class body)
field ::= [final]opt t fd = e (field decl)
meth ::= t mn(arg∗) { e } (method decl)

arg ::= t x (variable decl)
s, t ::= c | int | long (type)

c ::= cn | Object (class type)
e ::= new c (allocate)

| x (variable)
| e.fd (field access)
| e.fd = e (field update)
| e.mn(e∗) (method call)
| let arg = e in e (variable binding)
| while e e (iteration)
| if e e e (conditional)
| synchronized e e (synchronization)
| fork e (fork)

cn ∈ class names
fd ∈ field names

mn ∈ method names
x , y ∈ variable names

Figure 1: ConcurrentJava.

We present example programs in an extended language
with integer and boolean constants and operations, and the
constant null. The sequential composition e1; e2 abbrevi-
ates let x = e1 in e2, where x does not occur free in e2; the
expression e[x := e′] denotes the capture-free substitution of
e′ for x in e. We sometimes enclose expressions in parenthe-
ses or braces for clarity and use return e to emphasize that
the result of e is the return value of the current method.

3. TYPES FOR ATOMICITY

3.1 Basic Atomicities
Like conventional type systems, our type system assigns

to each expression a type characterizing the value of that
expression. In addition, our type system also assigns to each
expression an atomicity characterizing the behavior [39] or
effect of that expression. The set of atomicities includes the
following basic atomicities:

• const: An expression is assigned the atomicity const

if its evaluation does not depend on or change any mu-
table state. Hence the repeated evaluation of a const

expression with a given environment always yields the
same result.

• mover: An expression is assigned the atomicity mover

if it both left and right commutes with operations of
other threads. For example, an access to a field f de-
clared as guarded by l is a mover if the access is per-
formed with the lock l held. Clearly, this access can-
not happen concurrently with another access to f by a
different thread if that thread also accesses f with the
lock l held. Therefore, this access both left and right
commutes with any concurrent operation by another
thread. 1

1Since Java does not provide separate lock acquire and re-

• atomic: An expression is assigned the atomicity atomic

if it is a single atomic action or if it can be considered
to execute without interleaved actions of other threads.

• cmpd: An expression is assigned the atomicity cmpd if
none of the preceeding atomicities apply.

• error: An expression is assigned the atomicity error

if it violates the locking discipline specified by the type
annotations.

If the basic atomicity α reflects the behavior of an expres-
sion e, then the iterative closure α∗ reflects the behavior of
executing e an arbitrary number of times, and is defined as
follows:

const
∗ = const

mover
∗ = mover

atomic
∗ = cmpd

cmpd
∗ = cmpd

error
∗ = error

Similarly, if basic atomicities α1 and α2 reflect the behav-
ior of e1 and e2 respectively, then the sequential composition
α1; α2 reflects the behavior of e1; e2, and is defined by the
following table.

; const mover atomic cmpd error

const const mover atomic cmpd error

mover mover mover atomic cmpd error

atomic atomic atomic cmpd cmpd error

cmpd cmpd cmpd cmpd cmpd error

error error error error error error

Basic atomicities are ordered by the subatomicity relation:

const � mover � atomic � cmpd � error

Let � denote the join operator based on this subatomicity
ordering. If basic atomicities α1 and α2 reflect the behavior
of e1 and e2 respectively, then the nondeterministic choice
between executing either e1 or e2 has atomicity α1 � α2.

3.2 Conditional Atomicities
In some cases, the atomicity of an expression depends on

the locks held by the thread evaluating that expression. For
example, an access to a field declared as guarded by l has
atomicity mover if the lock l is held by the current thread,
and has atomicity error otherwise. We assign such an access
the conditional atomicity :

l ? mover : error

A conditional atomicity l ? a : b is equivalent to atomicity a
if the lock l is currently held, and is equivalent to atomic-
ity b if the lock is not held. Conditional atomicities provide
a more precise characterization of the behavior of synchro-
nized statements and methods. We use l ? a to abbreviate
l ? a : error. The set of atomicities thus includes both the
basic atomicities described above and conditional atomici-
ties:

a, b ::= α | l ? a : b
α, β ::= const | mover | atomic | cmpd | error

l ::= e

lease operations, we do not need separate left movers and
right movers, since each expression is either a mover in both
directions or not at all.

福昕
高亮

福昕
下划线

福昕
高亮

福昕
下划线

福昕
下划线

福昕
高亮

福昕
下划线

福昕
下划线

福昕
高亮

Each atomicity a is equivalent to a function [[a]] from the
set of locks currently held to a basic atomicity:

[[α]](ls) = α

[[l ? a1 : a2]](ls) =

j
[[a1]](ls) if l ∈ ls
[[a2]](ls) if l �∈ ls

For example, the conditional atomicity a:

l1 ? mover : (l2 ? atomic : error)

is equivalent to the function:

[[a]](ls) =

8<
:

mover if l1 ∈ ls
atomic if l1 �∈ ls, l2 ∈ ls
error if l1 �∈ ls, l2 �∈ ls

We extend the calculation of iterative closure, sequential
composition, and join operations to conditional atomicities
as follows:

(l ? a : b)∗ = l ? a∗ : b∗

(l ? a1 : a2); b = l ? (a1; b) : (a2; b)
α; (l ? b1 : b2) = l ? (α; b1) : (α; b2)

(l ? a1 : a2) � b = l ? (a1 � b) : (a2 � b)
α � (l ? a1 : a2) = l ? (α � a1) : (α � a2)

We also extend the calculation of subatomicity ordering to
conditional atomicities. To decide a � b, we use an auxiliary
relation �h

n, where h is a set of locks that is known to be
held by the current thread, and n is a set of locks that is
known to be not held by the current thread. Intuitively, the
condition a �h

n b holds if and only if [[a]](ls) � [[b]](ls) holds
for every lockset ls that contains h and is disjoint from n.
We define a � b to be a �∅

∅ b and check a �h
n b recursively

as follows:

α � β

α �h
n β

(l �∈ n ⇒ a1 �h∪{l}
n b) (l �∈ h ⇒ a2 �h

n∪{l} b)

l ? a1 : a2 �h
n b

(l �∈ n ⇒ α �h∪{l}
n b1) (l �∈ h ⇒ α �h

n∪{l} b2)

α �h
n l ? b1 : b2

The following theorem claims that the iterative closure,
sequential composition, and join operations on conditional
atomicities are the pointwise extensions of the corresponding
operations on basic atomicities. Similarly, the subatomicity
ordering on conditional atomicities is the pointwise exten-
sion of the subatomicity ordering on basic atomicities.

Theorem 1. For all atomicities a and b, the following
statements are true.

1. For all locksets ls,

[[a∗]](ls) = ([[a]](ls))∗

[[a; b]](ls) = [[a]](ls); [[b]](ls)
[[a � b]](ls) = [[a]](ls) � [[b]](ls)

2. a � b ⇔ ∀ls. [[a]](ls) � [[b]](ls)

The relation � is an equivalence relation with minimum
element const and maximum element error. Atomicities a
and b are equivalent , written a ≡ b, if a � b and b � a. If
a ≡ b, then ∀ls. [[a]](ls) = [[b]](ls). The equivalence relation ≡

identifies atomicities that are syntactically different but se-
mantically equal. For example, (l ? mover : mover) ≡ mover.
The following theorem states interesting properties of atom-
icities.

Theorem 2. For all atomicities a, b, and c, the following
statements are true.

1. Iterative closure is monotonic and idempotent.

a � a∗

(a∗)∗ ≡ a∗

2. Sequential composition is monotonic and associative
and const is a left and right identity of this operation.

a � a; b
(a; b); c ≡ a; (b; c)
const; a ≡ a
a; const ≡ a

3. Sequential composition and iterative closure distribute
over the join operation.

a; (b � c) ≡ a; b � a; c
(a � b); c ≡ a; c � b; c
(a � b)∗ ≡ a∗ � b∗

3.3 The Type System
The atomicity of a field access depends on the synchro-

nization discipline used for that field. Our type system relies
on the programmer to explicate this synchronization disci-
pline as a type annotations. The annotation guarded by l
expresses the common synchronization discipline that the
lock expression l must be held whenever the field is read or
written. The annotation write guarded by l states that the
lock expression l must be held for writes, but not necessarily
for reads. If neither annotation is present, the field can be
read or written at any time.

The soundness of the type system requires that each lock
expression l denotes a fixed lock throughout the execution of
the program. We satisfy this requirement by ensuring that
each lock expression has atomicity const; such expressions
include references to immutable variables2, accesses to final
fields of const expressions, and calls to const methods with
const arguments.

Each method declaration includes a specification of the
method’s atomicity. The type system checks that the body
of the method has this atomicity, and uses this atomicity at
call sites of the method. We extend the syntax of field and
method declarations to include these type annotations, and
refer to the extended language as AtomicJava.

field ::= [final]opt t fd [g]opt = e (fields)
meth ::= a t mn(arg∗) { e } (methods)

g ::= guarded by l | write guarded by l (guards)
l ::= e (lock expression)

A method declaration may also contain the type annotation
requires l1 , . . . , ln stating that the locks l1 , . . . , ln should be
held at any call site of the method. A method declaration
with a requires clauses, such as:

a t mn(arg∗) requires l1 , . . . , ln { e }
2All variables are immutable in AtomicJava, but only final
variables are in Java.

福昕
下划线

福昕
下划线

福昕
下划线

福昕
高亮

福昕
高亮

福昕
高亮

is an abbreviation for the declaration:

(l1 ? l2 ? . . . ? ln ? a) t mn(arg∗) { e }
where the conditional atomicity (l1 ? l2 ? . . . ? ln ? a) is equiv-
alent to a if the locks l1 , . . . , ln are all held, and equivalent
to error otherwise.

The core of our type system is a set of rules for reasoning
about the type judgment

P ; E � e : t & a .

Here, P (the program being checked) is included in the judg-
ment to provide information about class definitions in the
program; E is an environment providing types for the free
variables of e; t is the type of e, and a is the atomicity of e.

The rule [exp while] for while e1 e2 determines the atom-
icities a1 and a2 of e1 and e2, and states that the atomicity of
the while loop is a1; (a2; a1)

∗, reflecting the iterative nature
of the while loop.

[exp while]
P ; E � e1 : int & a1 P ; E � e2 : t & a2

P ; E � while e1 e2 : int & (a1; (a2; a1)∗)

The atomicity of a field access e.fd depends on the syn-
chronization discipline, if any, used for that variable. If fd is
a final field, then the rule [exp ref final] checks that e is
a well-typed expression of some class type c and that c de-
clares or inherits a final field fd of type t. It states that e.fd
has type t and atomicity a;const, where a is the atomicity
of e.

[exp ref final]
P ; E � e : c & a

P ; E � (final t fd = e′) ∈ c

P ; E � e.fd : t & (a; const)

The rule [exp ref race] deals with the case where fd is
not final and not protected.

[exp ref race]
P ; E � e : c & a

P ; E � (t fd = e′) ∈ c
P ; E � e.fd : t & (a; A(t))

The atomicity A(t) of the field reference depends on the
type t. If t is a class type or int, then the field reference
is atomic. If t is long, then the field may be read with two
32-bit loads, and hence is cmpd.

A(t) =

j
atomic if t �= long

cmpd if t = long

The rule [exp ref guard] applies when fd is guarded by
a lock l. In this case, the field reference has atomicity mover

provided the lock is held, and has atomicity error other-
wise. The substitution l[this := e] accounts for the aliasing
between this and e. That is, occurrences of this in the lock
expression l refer to the object being dereferenced, which is
the same object as that denoted by e.

[exp ref guard]
P ; E � e : c & a

P ; E � (t fd guarded by l = e′) ∈ c
b ≡ (l[this := e] ? mover) P ;E � b

P ; E � e.fd : t & (a; b)

The rule [exp ref write guard] applies when fd is write
guarded by a lock, i.e., the lock must be held for writes but
not for reads. If the lock is held, then the reference is a
mover, since it commutes with reads by other threads, and
no other thread can write to the field. If the lock is not
held, the field reference has atomicity A(t), i.e., the read is
atomic if and only if fd is not of type long.

[exp ref write guard]
P ; E � e : c & a

P ; E � (t fd write guarded by l = e′) ∈ c
b ≡ (l[this := e] ? mover : A(t)) P ; E � b

P ; E � e.fd : t & (a; b)

The rules for field updates e.fd = e′ are similar to those for
field accesses. A final field cannot be updated. A guarded by

field can only be updated if the appropriate lock is held, and
the update is a mover. A write guarded by field can only
be updated if the appropriate lock is held, and the update
has atomicity A(t), where t is the type of the field. An un-
protected field can always be updated, and the update has
atomicity A(t).

The atomicity of a method call reflects the atomicity of
the callee. The substitution b[this := e0] in the method call
rule accounts for the aliasing between this and e0. That is,
occurrences of this in the method’s atomicity b refer to
the object being invoked, which is the same object as that
denoted by e0.

[exp call]
P ; E � ei : ti & ai t0 = c P ; E � b[this := e0]

P ; E � (b s mn(t1 y1 , . . . , tn yn) { e }) ∈ c
P ; E � e0.mn(e1 , . . . , en) : s & (a0; a1; . . . ; an; b[this := e0])

The rule [exp sync] for synchronized l e checks that l is a
const expression of some class type c and infers the atom-
icity a of the synchronized body e.

[exp sync]
P ; E � l : c & const P ; E � e : t & a

P ; E � synchronized l e : t & S(l, a)

The function S defined below determines the atomicity of
the synchronized statement. For example, if the body is a
mover and the lock is already held, then the synchronized
statement is also a mover, since the acquire and release op-
erations are no-ops. If the body is a mover and the lock is
not already held, then the synchronized statement is atomic,
since the execution consists of a right mover (the acquire),
followed by a left and right mover (the body), followed by a
left mover (the release). If the body has conditional atomic-
ity l ? b1 : b2, then we ignore b2 and recursively apply S to b1,
since we know that l is held within the synchronized body.
If the body has some other conditional atomicity, then we
recursively apply S to both branches.

S(l, const) = l ? const : atomic
S(l, mover) = l ? mover : atomic

S(l, atomic) = atomic

S(l, cmpd) = cmpd

S(l, error) = error

S(l, (l ? b1 : b2)) = S(l, b1)
S(l, (l′ ? b1 : b2)) = l′ ? S(l, b1) : S(l, b2) if l �= l′

The rule [exp fork] for fork e requires that the forked
expression have atomicity cmpd. In particular, a coarser

atomicity such as l ? cmpd : error is not allowed, because this
atomicity is equivalent to error when the lock l is not held,
and the newly forked thread does not initially hold any locks.

[exp fork]
P ; E � e : t & cmpd

P ; E � fork e : int & atomic

The type system also supports subtyping and subatomic-
ities.

[exp sub]
P ; E � e : s & a

P � s <: t P ;E � a � b
P ; E � e : t & b

The remaining type rules are mostly straightforward. The
complete set of type judgments and rules is contained in Ap-
pendix A. If a program P is well-typed according to these
rules, and an arbitrarily-interleaved execution of P reaches
a state s in which no thread is executing an atomic method,
then the state s is also reachable via a serial execution of
P . An execution of P is serial if the execution of an atomic
method is never interleaved with actions of other threads.
This soundness property has been formally proved for an
earlier version of our type system [20] for a sequentially con-
sistent shared-memory model.

3.4 Atomic bank accounts
To illustrate the use of our type system, we now apply it

to the bank account example of Section 1.1. We first add
type annotations to the initial version of the bank account
stating that the field balance is guarded by this, and that
all bank account methods are atomic.

class Account {
int balance guarded_by this = 0;
atomic int deposit2(int x) { ... }
atomic int readBalance1() { ... }
atomic int withdraw1(int amt) { ... }

}

Our type system detects that the withdraw1 method is not
atomic, since it consists of two sequentially composed atomic
expressions and therefore behaves erroneously under certain
thread interleavings.

We replace withdraw1 with the fixed method withdraw2,
and also optimize readBalance1 to readBalance2, resulting
in an optimized synchronization discipline that we explicate
using the write guarded by annotation:

class Account {
int balance write_guarded_by this = 0;
atomic int deposit2(int x) { ... }
atomic int readBalance2() { ... }
atomic int withdraw2(int amt) { ... }

}

The corrected and optimized implementation type checks,
indicating that all these methods are atomic.

An alternative implementation of the bank account may
rely on its clients to perform the necessary synchronization
operations. The following method signatures explicate the
requirement that the object’s lock must be acquired be-
fore calling certain methods, but not others. The meth-
ods deposit3 and withdraw3 are versions of deposit2 and
withdraw2 where the synchronized statement is hoisted out
of the method bodies and left to the caller. Our type system
can again verify that all these methods are atomic.

class Account {
int balance write_guarded_by this = 0;
atomic int deposit3(int x) requires this { ... }
atomic int readBalance2() { ... }
atomic int withdraw3(int amt) requires this { ... }

}

4. EVALUATION
To evaluate the usefulness of our type system, we have

implemented it for the full Java programming language [23]
and applied it to a variety of standard Java library classes.

4.1 Implementation
Our implementation extends the type system outlined so

far to handle the additional features of Java, including ar-
rays, interfaces, constructors, static fields and methods, in-
ner classes, and so on. The extra type and atomicity anno-
tations required by the type checker are embedded in spe-
cial Java comments that start with the character “#”, thus
preserving compatibility with existing Java compilers and
other tools. The default atomicity for unannotated routines
is cmpd, thus the atomic type checker passes all unannotated,
well-typed Java programs. The checker allows class declara-
tions to be annotated with an atomicity that is the default
atomicity for each method in that declaration, which makes
it is easy to specify that every method in a class is atomic.

The atomicity checker is built on top of the race condi-
tion checker rccjava [18], and re-uses rccjava’s machinery
for reasoning about the set of locks held at each program
point and the locks used to protect fields. The checker also
infers the atomicity of each expression and statement in the
program, and checks the atomicity of each method body.
If a method body’s atomicity does not match the declared
atomicity of the method, an appropriate error message is
produced. This error message describes the inferred atom-
icity of each operation in the method body, which is crucial
for determining the cause of atomicity violations.

In practice, programs use a variety of synchronization
mechanisms, not all of which can be captured by our type
rules. Like rccjava, the atomicity checker is able to relax
the formal type system in several ways when it proves too
restrictive. The no warn annotation turns off certain kinds
of warnings on a particular line of code, and is commonly
used if a particular race condition is considered benign. The
holds annotation causes the checker to assume that a par-
ticular lock is held from the current program point to the
end of that statement block.

The checker may be configured to make global assump-
tions about when locks are held. For instance, the command
line flag “-constructor holds lock” causes the checker to
assume that the lock this is held in constructors. This
assumption is sound as long as references to this do not
escape to other threads before the constructor returns. Vi-
olations of this assumption are unlikely, and using it elimi-
nates a large number of spurious warnings. We believe this
command line flag could be replaced with a sound escape
analysis [10, 34] without significant reduction in the expres-
siveness of the system.

Extending the atomic type system to handle arrays intro-
duces a number of technical challenges. Following rccjava,
we use the type annotation /*# elems guarded by l */ to
specify the lock guarding the elements in an array. We also
introduce type annotations for arrays that are local to a par-

福昕
下划线

福昕
下划线

福昕
下划线

福昕
下划线

ticular thread, and for read-only arrays. In many cases, a
newly-allocated array is local to its allocating thread during
its initialization phase, and is later shared between threads,
either protected by a lock, or in a read-only mode. Since
the protection mechanism is part of the array’s type, we
use typecasts to accomodate such changes in the protection
mechanism. These typecasts are currently unsound, as in
C, rather than dynamically checked, as in Java. Many of
these typecasts could be statically checked by extending our
system with linear, unique, or ownership types [31, 6, 5].

4.2 Applications
To evaluate and gain experience with the atomicity checker,
we applied it to check several standard Java classes from
JDK1.4 that are intended to be atomic. These classes in-
clude StringBuffer, String, PrintWriter, Vector, URL,
Inflator, and Deflator, and vary in size from 296 to 2399
lines of code.

Adding appropriate type annotations to these classes was
mostly straightforward, once the synchronization discipline
of each class was understood. Determining the synchroniza-
tion discipline of each class was often an iterative process,
where we used the checker to investigate the behavior of
large code files, and to find violations of a hypothesised
synchronization discipline. While verifying the atomicity
of these classes, we had to add appropriate atomicity anno-
tations to called methods in other classes. We also used the
command line flag -constructor holds lock.

The atomicity checker succeeded in detecting a number of
subtle atomicity violations, including errors that would not
be caught by a race condition checker. A particularly clear
example of the benefits of our type system is provided by
the the class java.util.StringBuffer (version 1.70 from
JDK 1.4). The documentation of this class states that all
StringBuffer methods are atomic. The StringBuffer im-
plementation uses lock-based synchronization to achieve this
atomicity guarantee, and we formalized this synchroniza-
tion discipline using guarded by annotations. The following
StringBuffer method append failed to type check, and an
examination of the method reveals that it violates its atom-
icity specification:

public final class StringBuffer ... {
...

private int count /*# guarded_by this */;

/*# atomic */ // does not type check
public synchronized StringBuffer append(StringBuffer sb){

if (sb == null) { sb = NULL; }
int len = sb.length(); // len may be stale
int newcount = count + len;
if (newcount > value.length) expandCapacity(newcount);
sb.getChars(0, len, value, count); // use of stale len
count = newcount;
return this;

}
/*# atomic */
public synchronized int length() { return count; }

/*# atomic */
public synchronized void getChars(...) { ... }
}

After append calls the synchronized method sb.length(),
a second thread could remove characters from sb. In this
situation, len is now stale [9] and no longer reflects the cur-
rent length of sb, and so getChars is called with invalid ar-

guments and throws a StringIndexOutOfBoundsException.
The following test harness triggers this crash.

public class BreakStringBuffer extends Thread {
static StringBuffer sb = new StringBuffer("abc");
public void run() {

while(true) { sb.delete(0,3); sb.append("abc"); }
}
public static void main(String[] argv) {

(new BreakStringBuffer()).start();
while(true) (new StringBuffer()).append(sb);

}
}

We also type checked java.lang.String, and discovered
that it contains a method contentEquals, which suffers from
a similar defect: a property is checked in one synchronized
block and assumed to still hold in a subsequent synchronized
block, resulting in a potential ArrayIndexOutOfBoundsEx-
ception.

public boolean contentEquals(StringBuffer sb) {
if (count != sb.length()) return false;
// under a sequential execution count == sb.length()
// but concurrent threads may change that property
...
char v2[] = sb.getValue();
// subsequent code wrongly assumes v2.length==count
// and may throw an ArrayIndexOutOfBoundsException
...

}

Type checking java.io.PrintWriter raised interesting is-
sues concerning rep-exposure [15]. For example, the follow-
ing PrintWriter method tries to ensure atomicity using syn-
chronization:

public void println(int x) {
synchronized (lock) {

print(x);
println();

}
}

However, both print and println write to an underlying
Writer, which was originally passed to the PrintWriter con-
structor. Hence, some other thread could concurrently write
characters to the Writer, without acquiring the protecting
lock used by PrintWriter. To deal with this problem, we
declared println and 9 similar methods in PrintWriter as
cmpd, and the remaining 17 public methods as atomic, and
then succeeded in type checking PrintWriter. Our experi-
ence suggests that an ownership type system [5, 6] or escape
analysis [10, 34] for reasoning about rep-exposure [15] would
be helpful in verifying atomicity.

The class java.util.Vector illustrates the need for the
extra precision in our type system afforded by conditional
atomicities. The public method removeElementAt is atomic
when called without the vector’s lock being held, but also
must be a mover when called from removeElement with
the vector’s lock held, in order to verify the atomicity of
removeElement. Assigning removeElementAt the atomicity
this ? mover : atomic allows this class to type check.

public class Vector ... {

/*# conditional_atomicity this ? mover : atomic */
public void synchronized removeElementAt(int index)
{ ... }

Annotations per KLOC
Class LOC total guard requires atomicity arrays escapes

java.util.zip.Inflater 296 20.3 16.9 0.0 3.4 0.0 0.0
java.util.zip.Deflater 364 24.7 19.2 0.0 5.5 0.0 0.0
java.io.PrintWriter 557 35.9 5.4 0.0 25.1 0.0 5.4
java.util.Vector 1029 13.6 2.9 1.0 3.9 2.9 2.9
java.net.URL 1269 33.1 10.2 0.8 9.5 0.0 12.6
java.lang.StringBuffer 1272 18.9 2.4 3.9 4.7 7.1 0.8
java.lang.String 2399 21.7 0.0 0.0 1.3 19.2 1.3
All benchmarks 7186 23.3 4.7 1.0 5.9 8.1 3.6

Table 1: Programs analyzed using the Atomicity Checker.

/*# atomic */
public synchronized boolean removeElement(Object obj){

modCount++;
int i = indexOf(obj);
if (i >= 0) {

removeElementAt(i);
return true;

}
return false;

}
/*# atomic */
public int indexOf(Object elem) { ... }
...

}

Apart from the need for conditional atomicities, type check-
ing java.util.Vector was mostly straightforward. In par-
ticular, the race condition in lastIndexOf from JDK1.1 de-
tected by rccjava has been fixed.

The synchronization discipline used by java.net.URL is
fairly involved, and the atomicity checker reported a number
of race conditions. For example, the following method can
be simultaneously called from multiple threads, resulting in
multiple initializations of the field specifyHandlerPerm:

private static NetPermission specifyHandlerPerm;
private void checkSpecifyHandler(SecurityManager sm) {
if (specifyHandlerPerm == null)

specifyHandlerPerm =
new NetPermission("specifyStreamHandler");

sm.checkPermission(specifyHandlerPerm);
}

We have not yet determined if these warnings reflect real
errors in the program or benign race conditions.

We summarize our experience in checking these classes
in Table 1. It shows the names and the sizes of the vari-
ous classes that we checked; the number of annotations per
thousand lines of code required for each class; and breaks
down this number into guard annotations (guarded by and
write guarded by), requires annotations, atomicity anno-
tations, array annotations (elems guarded by, etc), and es-
capes from the type system (holds, no warn).

5. RELATED WORK
Lipton [28] first proposed reduction as a way to reason

about concurrent programs without considering all possi-
ble interleavings. He focused primarily on checking dead-
lock freedom. Doeppner [38], Back [4], and Lamport and
Schneider [27] extended this work to allow proofs of general
safety properties. Cohen and Lamport [12] extended reduc-
tion to allow proofs of liveness properties. Misra [32] has
proposed a reduction theorem for programs built with mon-
itors [26] communicating via procedure calls. Bruening [8]

and Stoller [37] have used reduction to improve the efficiency
of model checking.

A number of tools have been developed for detecting race
conditions, both statically and dynamically. The Race Con-
dition Checker [18] uses a type system to catch race condi-
tions in Java programs. This approach has been extended [7,
5] and adapted to other languages [24]. Other static race
detection tools include Warlock [36], for ANSI C programs,
and ESC/Java [19], which catches a variety of software de-
fects in addition to race conditions. ESC/Java has been ex-
tended to catch “higher-level” race conditions, where a stale
value from one synchronized block is used in a subsequent
synchronized block [9]. Vault [13] is a system designed to
check resource management protocols, and lock-based syn-
chronization can be considered to be such a protocol. Aiken
and Gay [1] also investigate static race detection, in the
context of SPMD programs. Eraser [35] detects race condi-
tions and deadlocks dynamically, rather than statically. The
Eraser algorithm has been extended to object-oriented lan-
guages [40] and has been improved for precision and perfor-
mance [11]. A variety of other approaches have been devel-
oped for race and deadlock prevention; they are discussed
in more detail in earlier papers [17, 18]. An alternative
approach is to generate synchronization code automatically
from high-level specifications [14].

Thus, reduction has been studied in depth, as have type
systems for preventing race conditions. This paper combines
these existing techniques in a type system that provides an
effective means for checking atomicity.

Recently, Freund and Qadeer have combined both reduc-
tion and simulation in the Calvin checker to verify con-
cise procedure specifications in multithreaded programs [22].
Our atomic type system is inspired by the Calvin checker,
but represents a different point in the tradeoff between scal-
ability and expressiveness. While Calvin’s semantic analy-
sis based on verification conditions and automatic theorem
proving is more powerful, the syntactic type-based analy-
sis of this paper provides several key benefits; it is simpler,
more predictable, more scalable, and requires fewer annota-
tions than the Calvin checker.

Atomicity is a semantic correctness condition for multi-
threaded software. In this respect, it is similar to strict
serializability [33] for database transactions and linearizabil-
ity [25] for concurrent objects. However, we are not aware
of any automated techniques to verify these conditions. We
hope that the lightweight analysis for atomicity presented
in this paper can be leveraged to develop checking tools for
other semantic correctness conditions as well.

While our type system can check the atomicity of code
blocks, researchers have proposed using atomic blocks as
a language primitive. Lomet [30] first proposed the use

of atomic blocks for synchronization. The Argus [29] and
Avalon [16] projects developed language support for imple-
menting atomic objects. Persistent languages [2, 3] are at-
tempting to augment atomicity with data persistence in or-
der to introduce transactions into programming languages.

6. CONCLUSION
Reasoning about the behavior of multithreaded programs

is difficult, due to the potential for subtle interactions be-
tween threads. However, programmers often expect that in
certain “atomic” methods, such interactions do not occur,
and document these beliefs by characterizing these methods
as “synchronized” or “thread-safe”. Knowing that certain
methods are atomic significantly simplifies subsequent (for-
mal or informal) reasoning about the correctness of those
methods, since they can be checked using traditional se-
quential reasoning techniques. However, despite the crucial
role of atomicity in reasoning about the behavior of multi-
threaded programs, programmers have had little support for
formally documenting or verifying atomicity properties.

To remedy this situation, we propose an extension to the
type language to allow methods to be annotated as atomic.
In addition, we present a type system for checking these
atomicity assertions. Although necessarily incomplete, this
atomic type system can handle a number of widely-used syn-
chronization disciplines. We have implemented the atomic
type system, and our experience to date indicates that this
technique is a promising approach for building more reli-
able multithreaded software. Our type checker uncovered
atomicity violations in classes such as java.lang.String

and java.lang.StringBuffer that cause crashes under cer-
tain thread interleavings.

For sequential languages, standard type systems provide a
means for expressing and checking fundamental correctness
properties. We hope that type systems such as ours will
play a similar role for reasoning about atomicity, a crucial
property of many methods in multithreaded programs.

Acknowledgments: We thank Mart́ın Abadi, Chandrashekhar
Boyapati, Dan Grossman, Stephen Freund, Shriram Krish-
namurthi and Sanjit Seshia for comments on this paper.

7. REFERENCES
[1] A. Aiken and D. Gay. Barrier inference. In POPL 98:

Principles of Programming Languages, pages 243–354.
ACM Press, 1998.

[2] M. P. Atkinson, K. J. Chisholm, and W. P. Cockshott.
PS-Algol: an Algol with a persistent heap. ACM SIGPLAN
Notices, 17(7):24–31, 1981.

[3] M. P. Atkinson and D. Morrison. Procedures as persistent
data objects. ACM Transactions on Programming
Languages and Systems, 7(4):539–559, 1985.

[4] R.-J. Back. A method for refining atomicity in parallel
algorithms. In PARLE 89: Parallel Architectures and
Languages Europe, volume 366 of Lecture Notes in
Computer Science, pages 199–216. Springer-Verlag, 1989.

[5] C. Boyapati, R. Lee, and M. Rinard. Ownership types for
safe programming: preventing data races and deadlocks. In
OOPSLA 02: Object-Oriented Programming, Systems,
Languages, and Applications, pages 211–230. ACM Press,
2002.

[6] C. Boyapati, R. Lee, and M. Rinard. Safe runtime
downcasts with ownership types. Technical Report 853,
MIT Laboratory for Computer Science, June 2002.

[7] C. Boyapati and M. Rinard. A parameterized type system
for race-free Java programs. In OOPSLA 01:

Object-Oriented Programming, Systems, Languages, and
Applications, pages 56–69. ACM Press, 2001.

[8] D. Bruening. Systematic testing of multithreaded Java
programs. Master’s thesis, Massachusetts Institute of
Technology, 1999.

[9] M. Burrows and K. R. M. Leino. Finding stale-value errors
in concurrent programs. Technical Note 2002-4, Compaq
Systems Research Center, May 2002.

[10] J.-D. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar, and
S. P. Midkiff. Escape analysis for Java. In OOPSLA 99:
Object-Oriented Programming Systems, Languages, and
Applications, pages 1–19. ACM Press, 1999.

[11] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar,
and M. Sridharan. Efficient and Precise Datarace Detection
for Multithreaded Object-Oriented Programs. In PLDI 02:
Programming Language Design and Implementation, pages
258–269. ACM Press, 2002.

[12] E. Cohen and L. Lamport. Reduction in TLA. In
CONCUR 98: Concurrency Theory, volume 1466 of
Lecture Notes in Computer Science, pages 317–331.
Springer-Verlag, 1998.

[13] R. DeLine and M. Fähndrich. Enforcing high-level
protocols in low-level software. In PLDI 01: Programming
Language Design and Implementation, pages 59–69. ACM
Press, 2001.

[14] X. Deng, M. Dwyer, J. Hatcliff, and M. Mizuno.
Invariant-based specification, synthesis, and verification of
synchronization in concurrent programs. In ICSE 02:
International Conference on Software Engineering, pages
442–452. ACM Press, 2002.

[15] D. L. Detlefs, K. R. M. Leino, and C. G. Nelson. Wrestling
with rep exposure. Research Report 156, DEC Systems
Research Center, July 1998.

[16] J. L. Eppinger, L. B. Mummert, and A. Z. Spector.
Camelot and Avalon: A Distributed Transaction Facility.
Morgan Kaufmann, 1991.

[17] C. Flanagan and M. Abadi. Types for safe locking. In
ESOP 99: European Symposium on Programming, volume
1576 of Lecture Notes in Computer Science, pages 91–108,
1999.

[18] C. Flanagan and S. N. Freund. Type-based race detection
for Java. In PLDI 00: Programming Language Design and
Implementation, pages 219–232. ACM Press, 2000.

[19] C. Flanagan, K. R. M. Leino, M. D. Lillibridge, C. G.
Nelson, J. B. Saxe, and R. Stata. Extended static checking
for Java. In PLDI 02: Programming Language Design and
Implementation, pages 234–245. ACM Press, 2002.

[20] C. Flanagan and S. Qadeer. Types for atomicity. In
TLDI 03: Types in Language Design and Implementation,
pages 1–12. ACM Press, 2003.

[21] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and
mixins. In POPL 98: Principles of Programming
Languages, pages 171–183. ACM Press, 1998.

[22] S. N. Freund and S. Qadeer. Checking concise specifications
for multithreaded software. Technical Note 01-2002,
Williams College, December 2002.

[23] J. Gosling, B. Joy, and G. Steele. The Java Language
Specification. Addison-Wesley, 1996.

[24] D. Grossman. Type-safe multithreading in Cyclone. In
TLDI 03: Types in Language Design and Implementation,
pages 13–25. ACM Press, 2003.

[25] M. P. Herlihy and J. M. Wing. Linearizability: A
correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems,
12(3):463–492, 1990.

[26] C. Hoare. Monitors: an operating systems structuring
concept. Communications of the ACM, 17(10):549–557,
1974.

[27] L. Lamport and F. Schneider. Pretending atomicity.
Research Report 44, DEC Systems Research Center, May
1989.

福昕
高亮

P � t
[type c]

class c . . . ∈ P
P � c

[type Object]

P � Object

[type int]

P � int

[type long]

P � long

P � s <: t
[subtype refl]

P � t
P � t <: t

[subtype class]
P � c1 <: c2 class c2 extends c3 . . . ∈ P

P � c1 <: c3

P � E
[env empty]

P � ∅

[env var]
P � E P � t x �∈ Dom(E)

P � E, t x

P ; E � a

[atom basic]
P � E

P ; E � α

[atom cond]
P ; E � l : c & const P ; E � ai

P ; E � l ? a1 : a2

P ; E � e : t & a

[exp sub]
P ; E � e : s & a

P � s <: t a � b
P ; E � e : t & b

[exp new]
P � E P � c

P ; E � new c : c & mover

[exp var]
P � E E = E1, t x , E2

P ; E � x : t & const

[exp ref final]
P ; E � e : c & a

P ; E � (final t fd = e′) ∈ c
P ; E � e.fd : t & (a; const)

[exp ref race]
P ; E � e : c & a

P ; E � (t fd = e′) ∈ c
P ; E � e.fd : t & (a; A(t))

[exp ref guard]
P ; E � e : c & a

P ; E � (t fd guarded by l = e′) ∈ c
b ≡ (l[this := e] ? mover) P ; E � b

P ; E � e.fd : t & (a; b)

[exp ref write guard]
P ; E � e : c & a

P ; E � (t fd write guarded by l = e′) ∈ c
b ≡ (l[this := e] ? mover : A(t)) P ; E � b

P ; E � e.fd : t & (a; b)

[exp assign race]
P ; E � e : c & a
P ; E � e′ : t & a′

P ; E � (t fd = e′′) ∈ c
P ; E � e.fd = e′ : t & (a; a′; A(t))

[exp assign guard]
P ;E � e : c & a
P ; E � e′ : t & a′

P ; E � (t fd guarded by l = e′′) ∈ c
b ≡ (l[this := e] ? mover) P ; E � b

P ;E � e.fd = e′ : t & (a; a′; b)

[exp assign write guard]
P ; E � e : c & a
P ; E � e′ : t & a′

P ; E � (t fd write guarded by l = e′′) ∈ c
b ≡ (l[this := e] ? A(t)) P ; E � b

P ; E � e.fd = e′ : t & (a; a′; b)

[exp call]
P ; E � ei : ti & ai t0 = c P ; E � b[this := e0]

P ; E � (b s mn(t1 y1 , . . . , tn yn) { e }) ∈ c

P ; E � e0.mn(e1 , . . . , en) : s & (a0; a1; . . . ; an; b[this := e0])

[exp let]
P ;E � e1 : t1 & a1

P ;E, t x � e2 : t2 & a2 P ; E � a2[x := e1]

P ; E � let t x = e1 in e2 : t2 & (a1; a2[x := e1])

[exp if]
P ; E � e1 : int & a1 P ; E � e2 : t & a2 P ; E � e3 : t & a3

P ;E � if e1 e2 e3 : t & (a1; (a2 � a3))

[exp while]
P ; E � e1 : int & a1 P ; E � e2 : t & a2

P ; E � while e1 e2 : int & (a1; (a2; a1)∗)

[exp sync]
P ; E � l : c & const P ; E � e : t & a

P ; E � synchronized l e : t & S(l, a)

[exp fork]
P ; E � e : t & cmpd

P ; E � fork e : int & atomic

P ; E � field

[field no guard]
P � E

P ;∅ � e : t & mover

P ; E � [final]opt t fd = e

[field guard]
P ; E � l : c & const
P ; ∅ � e : t & mover

P ; E � t fd [write]guarded by l = e

P ;E � meth

[method]
P ;E � a P � t

P ; E,arg1...n � e : t & a
P ; E � a t mn(arg1...n) { e }

P � field ∈ c

[field member]
P � c <: c′

class c′ . . . {. . . field . . .} ∈ P
P � field ∈ c

P � meth ∈ c
[method member]

P � c <: c′
class c′ . . . {. . . meth . . .} ∈ P

P � meth ∈ c

P � defn

[class]
E = cn this P � c

P ; E � field i P ; E � methi

P � class cn extends c { field1...j meth1...k}

� P
[prog]

ClassOnce(P) WFClasses(P) FieldsOnce(P)
MethodsOnce(P) OverridesOK(P)

P = defn1...n e P � defni P ; ∅ � e : t & cmpd

� P

Figure 2: The typing rules.

[28] R. Lipton. Reduction: A method of proving properties of
parallel programs. In Communications of the ACM, volume
18:12, pages 717–721, 1975.

[29] B. Liskov, D. Curtis, P. Johnson, and R. Scheifler.
Implementation of Argus. In SOSP 87: Symposium on
Operating Systems Principles, pages 111–122, 1987.

[30] D. B. Lomet. Process structuring, synchronization, and
recovery using atomic actions. Language Design for
Reliable Software, pages 128–137, 1977.

[31] N. H. Minsky. Towards alias-free pointers. In ECOOP 96:
European Conference for Object-Oriented Programming,
volume 1098 of Lecture Notes in Computer Science, pages
189–209. Springer-Verlag, 1996.

[32] J. Misra. A Discipline of Multiprogramming: Programming
Theory for Distributed Applications. Springer-Verlag, 2001.

[33] C. Papadimitriou. The theory of database concurrency
control. Computer Science Press, 1986.

[34] A. Salcianu and M. Rinard. Pointer and escape analysis for
multithreaded programs. ACM SIGPLAN Notices,
36(7):12–23, 2001.

[35] S. Savage, M. Burrows, C. G. Nelson, P. Sobalvarro, and
T. A. Anderson. Eraser: A dynamic data race detector for
multithreaded programs. ACM Transactions on Computer
Systems, 15(4):391–411, 1997.

[36] N. Sterling. WARLOCK — a static data race analysis tool.
In USENIX Technical Conference Proceedings, pages
97–106, Winter 1993.

[37] S. D. Stoller. Model-checking multi-threaded distributed
Java programs. In SPIN 00: Workshop on Model Checking
and Software Verification, volume 1885 of Lecture Notes in
Computer Science, pages 224–244. Springer-Verlag, 2000.

[38] T. W. Doeppner, Jr. Parallel program correctness through
refinement. In POPL 77: Principles of Programming
Languages, pages 155–169. ACM Press, 1977.

[39] J.-P. Talpin and P. Jouvelot. The type and effect discipline.
In LICS 92: Logic in Computer Science, pages 162–173.
IEEE Computer Society Press, 1992.

[40] C. von Praun and T. Gross. Object-race detection. In
OOPSLA 01: Object-Oriented Programming, Systems,
Languages, and Applications, pages 70–82. ACM Press,
2001.

APPENDIX

A. THE TYPE SYSTEM
This appendix presents the type system described in Sec-

tion 3. We define the following predicates informally, based
on similar predicates in [21].

Predicate Meaning

ClassOnce(P) no class is declared twice in P
WFClasses(P) there are no cycles in the class hierarchy
FieldsOnce(P) no class contains two fields with the same

name, either declared or inherited
MethodsOnce(P) no class contains two declared methods

with the same name
OverridesOK(P) overriding methods have the same

atomicity, return type, parameter types,
and requires set as the overridden method

A typing environment is defined as

E ::= ∅ | E , arg

We define the type system using the following judgments
and the typing rules in Figure 2. We use the notation
[write]guarded by to denote either write guarded by or
guarded by.

Judgment Meaning

P � t t is a well-formed type
P � s <: t s is a subtype of t
P � E E is a well-formed typing environment
P ; E � a a is a well-formed atomicity
P ; E � e : t & a expression e has type t and atomicity a
P ; E � field field is a well-formed field
P ; E � meth meth is a well-formed method
P � field ∈ c class c declares/inherits field
P � meth ∈ c class c declares/inherits meth
P � defn defn is a well-formed class definition
� P program P is well-formed

