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ABSTRACT
Concurrency bugs are becoming increasingly important due
to the prevalence of concurrent programs. A fundamental
problem of concurrent program bug detection and testing is
that the interleaving space is too large to be thoroughly ex-
plored. Practical yet effective interleaving coverage criteria
are desired to systematically explore the interleaving space
and effectively expose concurrency bugs.

This paper proposes a concurrent program interleaving
coverage criteria hierarchy, including seven (including five
new) coverage criteria. These criteria are all designed based
on different concurrency fault models. Their cost ranges
from exponential to linear.

Categories and Subject Descriptors: D.2.5 [Software
Engineering]: Testing and Debugging–Testing tools

General Terms: Reliability

Keywords: interleaving, coverage criteria, concurrent pro-
gram

1. INTRODUCTION
Concurrent programs, specifically multi-threaded and multi-

processed programs on shared memory machines, have be-
come increasingly important in the past few years. Unfor-
tunately, concurrent programs are prone to bugs due to the
inherent complexity of concurrency. Even worse, the soft-
ware testing and bug detection efforts [4, 10] to improve the
concurrent program quality are greatly obstructed by the
problematic interleaving space of the concurrent programs.

S1:     t1 = mCount;

S2: mCount = t1 + 1;

S3:     t2 = mCount;

S4: mCount = t2 + 1;

Thread 1 Thread 2 Some interleavings of the code 
(e.g. S1  S2  S3  S4) 
will lead to correct results.

Some (e.g. S1 S3 S2 S4)
will lead to wrong results 

(one thread’s update missed)
--- A Concurrency Bug

mCount gets its initial value from input; 
it is shared by thread 1 and thread 2

Figure 1: An example simplified from a real Mozilla

data race bug. The selected interleaving affects the final

value of mCount and whether the bug is revealed.

Copyright is held by the author/owner(s).
ESEC/FSE’07, September 3–7, 2007, Cavat near Dubrovnik, Croatia.
ACM 978-1-59593-811-4/07/0009.

Interleaving is an important and unique domain of concur-
rent programs. Unlike the execution of sequential programs,
which is almost solely determined by the input, the execu-
tion and bug triggering of concurrent programs are greatly
affected by the non-deterministic interleaving among con-
current execution components (threads or processes). As
shown in Figure 1, one program input could generate differ-
ent results due to different interleaving orders. In order to
expose a concurrency bug, we need to explore not only dif-
ferent inputs but also different interleavings for one input,
as tried in real world and previous research [4].

Unfortunately, real world concurrent programs have huge
interleaving spaces (factorial to the execution length for each
program input). Real world testing resource can only check a
small portion of the interleaving space. A lot of concurrency
bugs inevitably skip into production runs.

In order to effectively explore the large interleaving space,
good coverage criteria are required. Statement [1] and data
flow coverage [3, 6] are widely used to help select representa-
tive inputs. Similarly, interleaving coverage criteria is needed
to help select representative interleavings to effectively test
concurrent programs and expose concurrency bugs.

Existing interleaving coverage criteria [2, 5, 11] are quite
limited. Many of them are either too complicated, with ex-
ponential cost, or not based on solid concurrency fault mod-
els. Furthermore, there is no wide-spectrum interleaving
coverage criteria hierarchy yet. In order to provide software
testers more choices and researchers better understanding
of the trade-offs between coverage criteria’s cost and bug-
exposing capability, good coverage criteria hierarchies are
desired.

This paper makes the following contributions:

(1) A wide-spectrum interleaving coverage criteria
hierarchy Seven interleaving coverage criteria (five out
of the seven are newly proposed in this paper) are proposed.
They are designed based on different concurrency fault mod-
els and represent different levels of software quality require-
ments. Following subsumption relationship [16], these crite-
ria compose a five-layer hierarchy. This hierarchy can pro-
vide a wide spectrum of choices and guidelines to effectively
explore the interleaving space to expose concurrency bugs.

(2) Analysis of the cost of the proposed coverage
criteria Our cost analysis shows that the proposed coverage
criteria range from exponential cost to linear cost. Some of
our proposed criteria have linear or quadratic coverage cost
and also have solid concurrency fault model basis. They all
have the potential to help the practical concurrent program
testing.



2. CONCEPTS ON COVERAGE CRITERIA
A program coverage criterion usually focuses on test case

selection from a certain program testing space, e.g. the in-
put space, the interleaving space, etc. A criterion C includes
two parts. One is a set Γ of program properties, which could
be program statements, program branches, etc. One is a
property-satisfaction function f , indicating what test cases
can satisfy (exercise) a certain program property. The ade-
quacy of a testing is measured by C by checking how many
program properties are satisfied (exercised). If all the pro-
gram properties are satisfied, the testing achieves complete
coverage and is called a complete testing under C.

Cost and bug-exposing capability are the two most impor-
tant metrics for a coverage criterion. A coverage criterion’s
cost can be measured by the number of test cases needed to
exercise all the properties [14]. The capabilities of exposing
hidden program bugs are different among testings guided by
different coverage criteria, because different coverage criteria
have different focus on exercising program properties.

It is usually difficult to reach good balance between cost
and bug-exposing capability. That is why people used to
compose hierarchical families [1, 6] of coverage criteria in
order to gain a thorough understanding of the design trade-
offs. In general, a good criterion should be based on an
valid fault models. For example, structural coverage criteria
are based on the fault model that most sequential bugs are
related to certain program structures and control flows.

3. A MODEL FOR INTERLEAVING
Consider a concurrent program P , executed under an in-

put I, consisting of M threads: 1, 2, ..., M . Similar to pre-
vious work [13], we model the concurrent execution of P by
a sequence of shared variable access events. We use E to
denote the set of all shared variable accesses, and PE for a
program P with access set E under a given input. At any
moment only one thread i is active and executes one event.
When i finishes, one thread j (j might be equal to i) will
be chosen and executes its next event. The event execution
order within each thread is fixed. The order among different
threads might change. Each different order to execute PE is
called an interleaving. Formally speaking, an interleaving
≺ of PE is a total order relation on E. An event e is exe-
cuted before an event e′ iff e ≺ e′. The whole interleaving
domain of PE is the set of all total order relations on E that
maintain the sequential order within each thread.

4. INTERLEAVING COVERAGE CRITERIA
This section presents seven coverage criteria with different

interleaving property sets. They are designed based on dif-
ferent concurrency fault models, starting from the most con-
servative bug assumption—most exhaustive criterion, and
ending with the most aggressive (focused) assumption—most
simplified criterion. These criteria together build a wide-
spectrum hierarchy. Note that among the seven criteria,
two of them (criterion 1 and 4.A) have been proposed be-
fore, while the other five are newly proposed in this paper.

4.1 Coverage Criteria Description
• Criterion 1: all-interleavings (ALL) The interleaving
space gets a“complete coverage” based on ALL, iff all feasible
interleavings of shared accesses from all threads are covered
(Figure 2(a)).

We start with a simple and exhaustive interleaving cover-
age criterion. It is clearly the most expensive yet also the
most powerful in exposing concurrency bugs.

Property Set: ALL criterion treats every interleaving as
one property for testing. The property set size is the total
number of possible interleavings and can be calculated as
following (Ni is number of access events from thread i):

|ΓALL| =
M
Y

i=1

 

PM
j=i Nj

Ni

!

Example: As shown in Figure 2(a), ALL includes all in-
terleavings of the events from the four threads. Its property
set size is as large as 63063000 for such a simple program!

• Criterion 2: thread-pair-interleavings (TPAIR) In-
terleaving space gets ‘complete coverage’ under TPAIR, if all
feasible interleavings of all shared memory accesses from any
pair of threads are covered (Figure 2(b)).

Starting from this model, we begin to use some concur-
rency fault models to gradually generalize our property set
and decrease the coverage cost.

Concurrency Fault Model: Similar to pair-wise testing,
this criterion is based on the fault model which assumes
that most concurrency bugs are caused by the interaction
between two threads, instead of all threads. This is a widely
believed concurrency fault model and is used in previous bug
detection work [8, 10].

Property Set: TPAIR’s property set contains every possi-
ble interleaving on all the accesses from every pair of threads
(Γ={≺i,j} (1 ≤ i < j ≤ M)). A program interleaving ≺ on
PE satisfies ≺i,j when the order of all the events from thread
i and j in ≺ is the same as that in ≺i,j .

The property set size can be calculated as following:

|ΓTPAIR| =
X

1≤i<j≤M

 

Ni + Nj

Ni

!

Example: As shown in Figure 2(b), one TPAIR property

for thread 1 and 2 could be ≺1,2: r1
1 ≺1,2 r1

2 ≺1,2 w1
3 ≺1,2

w1
4 ≺1,2 r2

1 ≺1,2 w2
2 ≺1,2 r2

3 ≺1,2 w2
4. Since this property

has no constraint on thread 3 and 4, totally 900900 (= (168 ) ·
(84)) program interleavings of all four threads can satisfy this
property. The whole property set has size: 420.

• Criterion 3: single-variable-interleavings (SVAR)
The interleaving space gets a “complete coverage” under cri-
terion SVAR, iff all feasible interleavings of all shared ac-
cesses to any specific variable from any pair of threads are
covered (Figure 2(c)).

Concurrency Fault Model: This criterion is based on the
observation that many concurrency bugs involve conflicting
accesses to one shared variable, instead of multiple variables.
This is a widely-adopted assumption in many concurrency
bug detection, such as the lockset race detection [10].

Property Set: It includes every interleaving of all accesses
from two threads to one shared variable ( ΓSVAR= ≺i,j,v,
1 ≤ i < j ≤ M, v ∈ V ). An interleaving ≺ of PE satisfies
property ≺i,j,v iff: all events in thread i and j accessing v

have the same order specified in ≺ as that in ≺i,j,v.
The property set size is as following (Ni,v is the number

of accesses from thread i to variable v):

|ΓSVAR| =
X

1≤i<j≤M

X

v∈V

„

Ni,v + Nj,v

Ni,v

«
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Thread 1 Thread 4Thread 2

Concurrency Fault Models: bugs are caused by interaction between ...
multiple threads

 multiple accesses 
to different variables

TWO threads
 multiple accesses 

to different variables

TWO threads
 multiple accesses 
to single variables

TWO threads
 3 or 2 accesses 

to single variables

One thread 
2 or 1 accesses and 

ANY remote interleaving

All-Interleavings 
Criterion

Thread-Pair-
Interleavings Criterion

Single-Variable-
Interleavings Criterion

Partial-Interleavings Criteria
(Def-Use Criterion;

 PInv Criterion)

Local-or-Remote Criteria
(LR-Def Criterion;
LR-Inv Criterion)

(a) (b) (c) (d) (e)
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Accesses to 
shared variable v
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Figure 2: Different concurrency fault models and corresponding testing coverage criteria ( The fault models
on the right are more focused and the corresponding testing costs are smaller than those on the left. The
solid and hollow circles in the figure represent memory accesses to two different shared variables.)

Example: As shown in Figure 2(c), an SVAR property is
an interleaving among accesses to v or u from any pair of
threads. For example, one property ≺1,2,v involving thread
1, thread 2 and variable v could be: r1

1 ≺1,2,v w1
3 ≺1,2,v

r2
1 ≺1,2,v w2

2 . Since this property has no constraint on thread
3, 4 and u access w1

4, it can be satisfied by totally 4504500
(= 5 · (168 ) · (84)) interleavings. The size of the whole property
set ΓSVAR is 72, much smaller than that of ΓTPAIR.

Criterion 4: partial-interleavings (PI) To further re-
duce the coverage cost, we can consider partial interleav-
ings, i.e. execution scheduling among a small number of ac-
cesses, based on the observation that many concurrency bugs
such as data races are caused by wrong order or interaction
among two or three accesses, instead of a complete interleav-
ing among all accesses, to one shared variable.

This fault model is more aggressive than previous ones, yet
still quite reasonable and used in previous bug detection [8]
and model checking [9]. It can have different variants. Here
we discuss two variants as following:

• Criterion 4.A: define-use (Def-Use) The interleav-
ing space gets a “complete coverage” under the Def-Use crite-
rion, iff all possible define-use pairs are covered (Figure 2(d)).

A similar criterion, a member of the data-flow coverage
criteria family [6], is used for sequential programs for decades
and was recently extended for concurrent programs [7, 15].

Concurrency Fault Model:

A1: mThread = NULL;
       … ...
A2: mThread =
  CreateThread(…,Main,...);

  nsThread::Main(void* arg)
  {

...
    A3: tmp = *mThread;

 ...
  }

Thread 1 (parent) Thread 2 (child)

A concurrency bug from Mozilla: wrong 
define-use pair A1 A3 would crash the program

The underlying assump-
tion is that, many bugs
are caused by a read
access using a variable
defined by a wrong writer, i.e. wrong define-use relation (an
example is shown in the figure on the right).

Property Set: Each property under Define-Use criterion
is simply a read-write access pair, where read-access reads
the value defined by the write-access. An interleaving ≺
satisfies a define-use property γ = (w, r) iff the write w

happens before the read r in the interleaving and there is no
other write to the variable read by r between them.

If we use Nr to denote the total number of read accesses
in a program, and Nr

i,v (Nw
i,v) for the total number of read

(write) accesses in thread i to variable v, the size of the
Def-Use property set can be calculated by:

|ΓDef-Use| = N
r +

X

1≤i6=j≤M

X

v∈V

(Nr
i,v · Nw

j,v)

Example: As shown in Figure 2(d), a Def-Use property is
a pair of write-read accesses to the same variable. For exam-
ple, all properties related to access r2

3 are: (w1
4, r

2
3), (·, r2

3),
(w3

4 , r2
3), (w4

4 , r2
3), where the first element in each pair is the

defining write, and (·, r2
3) means that access r2

3 reads the
initial value in memory. The size of the whole property set
ΓDef-Use is 32, smaller than that of ΓSVAR.

• Criterion 4.B: pair-interleave (PInv) The interleav-
ing space gets a “complete coverage” under PInv, if for each
consecutive access-pair from any thread, all feasible inter-
leaving accesses to it have been covered (Figure 2(d)).

In this criterion and the following criterion 5.B, we use
consecutive pair or consecutive accesses to denote a consec-
utive access pair from one thread accessing the same shared
variable (e.g. pair (r1

1, w
1
3) in Figure 2(d)); we also use in-

terleaving access to denote a remote access from another
thread. This access reads or writes the same variable be-
tween a consecutive pair described above (e.g. w2

2 could be-
come an interleaving access to above pair in Figure 2).

Concurrency Fault Model: Recent work [8, 12] has shown
that unexpected interleaving accesses to a consecutive pair
can indicate many concurrency bugs such as atomicity vio-
lations (an example is shown in Figure 1). PInv criterion is
exactly based on this fault model.

Property Set: Each property is a triplet composed of two

consecutive accesses, ei
1 and ei

2 from a thread i, and an in-
terleaving access ej (j 6= i) from another thread j. An in-
terleaving ≺ on PE satisfies a property γ = (ei

1, e
i
2; ej) when

the interleaving access ej occurs in the middle of ei
1 and ei

2

under ≺, i.e. ei
1 ≺ ej ≺ ei

2.
We use PN to denote the number of all consecutive access

pairs in the program; PNi,v for the number of consecutive
pairs in thread i on variable v. Specifically, PNi,v = Ni,v −
1, if Ni,v > 0; otherwisePNi,v = 0. Then the size of the
PInv property set can be calculated by:

|ΓPInv| = PN +
X

1≤i6=j≤M

X

v∈V

(PNi,v · Nj,v),

Example: As shown in Figure 2(d), a PInv property is a
pair of consecutive v (or u) accesses from one thread and an
interleaving access from another thread. For example, all
properties corresponding to variable v and thread 1, 2 are:
(r1

1, w
1
3 ; r

2
1) (r1

1, w
1
3 ; w

2
2) (r1

1 , w1
3; ·) (r2

1, w
2
2; r1

1) (r2
1, w

2
2 ; w

1
3)

(r2
1, w

2
2 ; ·). The 3rd event in each parentheses is the inter-

leaving access; · means no interleaving. ΓDef-Use has totally
56 properties, less than that of ΓSVAR.
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Criterion 5: local-or-remote (LR)
To further reduce the coverage cost, we can use more ag-

gressive fault models. One such direction is to extend cri-
terion 4.A and 4.B to focus on whether there exists an in-
terleaving access or a remote variable definer, instead of all
possible interleaving accesses or all possible remote defin-
ers. In this way, we only need to consider two properties for
each consecutive pair or reader— whether the remote influ-
ence exists or not. Of course, this relaxation might lead to
missing more concurrency bugs. In the following, we briefly
discuss the criterion 5.A, extended from criterion 4.A, and
5.B, extended from criterion 4.B.

• Criterion 5.A: local-or-remote-define (LR-Def) In-
terleaving space gets “complete coverage” under LR-Def, if
for each read-access r in the program, both of the following
cases have been covered — r reads a variable defined by local
thread (or the initial memory state) and r reads a variable
defined by a different thread (Figure 2(e)).

Concurrency Fault Model: The fault model is similar to
the general LR criteria described above.

Property Set: The property set ΓLR-Def includes at most
two properties for each read access r: r reading a value
defined by a local thread’s write access; and r reading value
defined by a different thread’s write.

The property set size ranges between N r and 2Nr, where
Nr is the number of all reads in PE.

• Criterion 5.B: local-or-remote interleave (LR-Inv)
Interleaving space gets “complete coverage” under LR-Inv,
if for every consecutive access pair (e, e′), from any thread
accessing any shared variable, both of the following cases
have been covered — (e, e′) has an unserializable interleaving
access and (e, e′) does not have one (Figure 2(e)).

Here, a (un)serializable interleaving is an interleaving
that has (not) equivalent effects to a serial execution [8, 12].

Concurrency Fault Model: This criterion extends the gen-
eral criterion 5 in a way similar to criterion 4.B by focusing
on interleaving access to consecutive access pair.

Property Set: Similar to criterion 5.A, the property set
ΓLR-Inv includes at most two properties for each consec-
utive access pair: unserializable interleaving case and no
interleaving or serializable interleaving case.

The property set size ranges between the number of all
possible consecutive pairs, PN , and 2PN .

Overall, criterion ALL subsumes criterion TPAIR, which
subsumes SVAR, which subsumes PI and LR. All together,
they build a hierarchy. Due to the space limit, we omit the
proof here.

5. COST ANALYSIS
The cost (refer to section 2) of the above seven cover-

age criteria can be approximated based on the property-set
size and how many properties an interleaving can cover. As
we can see in table 1, ALL, TPAIR and SVAR criteria all
require exponential number of interleavings for a complete
coverage, too expensive in practice. The other four criteria
Def-Use, PInv, LR-Def and LR-Inv are much better, with
only quadratic or linear cost. Of course, low cost usually
comes at the expense of bug exposing capabilities. Evalu-
ating these criteria’s bug exposing capability is remained as
our future work.

ALL TPAIR SVAR
Upper-

O(( 4n
√

n
)(M−1)) O( 4n

√
n
· M) O( 4n/V

√
n/V

· V M)
Bound
Lower-

O(( 4n
√

n
)(M−1)) O( 4n

√
n

) O( 4n/V
√

n/V
)

Bound

PInv DefUse LR-Inv LR-Def
Upper-

O(n2
·

M
V

) O(n2
·

M
V

+ n) O(n · M) O(n · M)
Bound
Lower-

O(n ·
M
V

) O(n ·
M−1

V
) O(1) O(1)

Bound

Table 1: Cost of coverage criteria. (V is the number

of variables; M is the number of threads. For simplicity

to conduct magnitude-level comparison, we approximate

that every thread has n accesses, and has nv = n
V

accesses

to each variable.)

6. CONCLUSIONS AND FUTURE WORK
This paper has presented a hierarchy of seven interleav-

ing coverage criteria for concurrent programs and their cost
analysis. Our next step is to use real world concurrent
programs and concurrency bugs to evaluate the bug expos-
ing capabilities of the proposed coverage criteria, especially
those with low cost (quadratic or linear). We will also ex-
tend our criteria hierarchy and study how to combine it with
the traditional input-selecting coverage criteria.
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