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Abstract 

One significant c!~allenge in bringing the power of parallel machines 
to application pr~grammers is providing them with a suite of soft- 
ware tools simila'to the tools that sequential programmers currently 
utilize. In partic~dar, automatic or semi-automatic testing tools for 
parallel program:~ are lacking. This paper describes our work in 
automatic gener~ tio:a of all-du-paths for testing parallel programs. 
Our goal is to detaonstrate that, with some extension, sequential test 
data adequacy cr~ teria are still applicable to parallel program testing. 
The concepts and algorithms in this paper have been incorporated 
as the foundatior of our DELaware PArallel Software Testing Aid, 
della pasta. 

Keywords: parallel programming, testing tool, all-du-path cover- 
age 

1 Introduction 

Recent trends in :omputer architecture and computer networks sug- 
gest that parallelism will pervade workstations, personal comput- 
ers, and network clusters, causing parallelism to become available 
to more than jus: the users of traditional supercomputers. Experi- 
ence with using iJarallelizing compilers and automatic paralleliza- 
tion tools has st". own that these tools are often limited by the un- 
derlying sequent al nature of the original program; explicit parallel 
programming by the user replacing sequential algorithms by parallel 
algorithms is often needed to take utmost advantage of these modem 
systems. A majzr Obstacle to users in ensuring the correctness and 
reliability of the r parallel software is the current lack of software 
testing tools for ' his paradigm of programming. 

Researchers haw studied issues regarding the analysis and testing of 
concurrent progr 1ms that use rendezvous communication. A known 
hurdle for applyi ag traditional testing approaches to testing parallel 

Prepared tL' ough collaborative participation in the Advanced 
Telecommunical:.ons/Information Distribution Research Program 
(ATIRP) Consortium sponsored by the U.S. Army Research Labo- 
ratory under Cot,perative Agreement DAAL01-96-2-0002. 

Permission to make ,ligital/hard copies of all or part of this material for 
personal or classroor: use is granted without fee provided that the copies 
are not made or dist.- buted for profit or commercial advantage, the copy- 
right notice, the title ,fthe publication and its date appear, and notice is 
given that copyright s by permission of the ACM, Inc. To copy otherwise, 
to republish, to post, .n servers or to redistribute to lists, requires specific 
permission and/or feL. 
ISSTA 98 Clea~ ater Beach Florida USA 
Copyright 1998 0-8~ 791.-971-8/98/03..$5.00 

programs is the nondeterministic nature of these programs. Some 
researchers have focused on solving this problem[13, 15], while 
others propose state-oriented program testing criteria for testing 
concurrent programs[14, 10]. Our hypothesis is that, with some 
extension, sequential test data adequacy criteria are still applicable 
to parallel program testing of various models of communication. 

Although many new parallel programming languages and libraries 
have been proposed to generate and manage multiple processes 
executing simultaneously on multiple processors, they can be cate- 
gorized by their synchronization and communication mechanisms. 
Message passing parallel programming accomplishes communica- 
tion and synchronization through explicit sending and receiving of 
messages between processes. Message passing operations can be 
blocking or nonblocking. Shared memory parallel programming 
uses shared variables for communication, and event synchroniza- 
tion operations. 

In this paper, we focus on the applicability of one of the major testing 
criteria, all-du-path testing[ 16], to both shared memory and message 
passing parallel programming. In particular, we examine the prob- 
lem of finding all-du-path coverage for testing a parallel program. 
The ultimate goal is to be able to generate test cases automatically 
for testing programs adequately according to the all-du-path criteria. 
Based on this criterion, all define-use associations in a program will 
be covered by at least one test case. The general procedure for find- 
ing a du-palr coverage begins with finding du-pairs in a program. 
For each du-pair, a path is then generated to cover the specific du- 
pair. Finally, test data for testing the path is produced [2][7]. This 
testing procedure has been well established for sequential programs; 
however, there is currently no known method for determining the 
all-du-path coverage for parallel programs. Moreover, the issues 
to be addressed toward developing such algorithms are not well 
defined. 

We present our algorithms for shared memory parallel programs, 
and then discuss the modifications necessary for the message pass- 
ing paradigm. We have been building a testing tool for parallel 
software, the Delaware Parallel Software Testing Aid, called delia 
pasta, to illustrate the effectiveness and usefulness of our tech- 
niques, della pasta takes a shared memory parallel program as 
input, and interactively allows the user to visually examine the all- 
du-path test coverages, pose queries about the various test coverages, 
and modify the test coverage paths as desired. In our earlier paper, 
we focused strictly on the all-du-path finding algorithm[18]. 

We begin with a description of the graph representation of a parallel 
program used in our work. We then describe our testing paradigm 
and how we cope with the nondeterministie nature of parallel pro- 
grams during the testing process. We discuss the major problems 
in providing all-du-path coverage for shared memory parallel pro- 
grams, and a set of conditions to be used in judging the effec- 
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tiveness of all-du-path testing algorithms. Current approaches to 
aU-du-path coverage for sequential programs of closest relevance 
to our work are then discussed. We present our algorithm for find- 
ing an all-du-path coverage for shared memory parallel programs, 
which combines and extends previous methods for sequential pro- 
grams. Modification of our data structures and algorithms for other 
parallel paradigms is discussed followed by the description of the 
della pasta tool• Finally, a summary of contributions and future 
directions are stated• 

2 Program Model and Notation 

The parallel program model that we use in this paper consists of 
multiple threads of control that can be executed simultaneously. A 
thread is an independent sequence of execution within a parallel 
program, (i.e., a subprocess of the parallel process, where a process 
is a program in execution)• The communication between two threads 
is achieved through shared variables; the synchronization between 
two threads is achieved by calling post  and wait  system calls; and 
thread creation is achieved by calling thepthread_create system call. 

We assume that the execution environment supports maximum par- 
allelism. In other words, each thread is executed in parallel inde- 
pendently until a wait  node is reached. This thread halts until a 
matching post is executed. The execution of  post  always succeeds 
without waiting for any other program statements. 

Formally, a shared memory parallel program can be defined as 
follows: P R O G  = (TI,T2,... ,Tn), where 7),(1 _< i _< n) represents 
n (>  2) threads. Moreover, T 1 is defined as the manager thread while 
all other threads are defined as worker threads, which are created 
when apthread_createO system call is issued• 
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Figure 1: Example  of  a PPFG 

To represent the control flow of a parallel program, a Parallel Pro- 

gram Flow Graph (PPFG) is defined to be a graph G = (V,E) in 
which V is the set of nodes representing statements in the program, 
and E consists of three sets of edges Es, ET, and Et. The  set Et 
consists of intra-thread control flow edges (m z, ni), where m and n 
are nodes in thread 7). The set Es consists of synchronization edges 
(post i, wait J), where post ~ is a post  statement in thread 7), waitJ is a 
wait statement in thread Tj, and i ~ j .  The set E T consists of thread 
creation edges (n i, n J), where n i is a call statement in thread 7) to 
the pthread_createO function, and n j is the first statement in thread 

We define apath Pi(ni~, nik) or simply Pi, within a thread 7) to be an 

alternating sequence of nodes and intra-thread edges n i l ,  i i e u  I , nu 2, 
i i i i i •.., of nodes nu~ , nu2 , . . . , nuk , where eu2 , nuk or simply a sequence 

uw is the unique node index in a unique numbering of the nodes 
and edges in the control flow graph of the thread 7) (e.g., a reverse 
postorder numbering). 

Figure 1 illustrates a PPFG. All solid edges are intra-thread edges. 
Edges in E S and ET are represented by dotted edges. This diagram 
also shows a define node d of variable m, i.e., m = x + y, and a use 
node u, i.e., z = 3 * m. The sequence begin - i f  - e n d i f  - loop - 
wait - u - loop - end is a path. 

A du-pair is a triplet ( var, n i ,  n j ), where n / is the u th node in 
thread 7) in the unique numbering of the nodes in thread 7), and the 
program variable var is defined in the statement represented by node 
n/ ,  while the program variable var is referenced in the v th node in 
the unique ordering of nodes in thread Tj. 

In a sequential program or a single thread T/of a parallel program, 
we say that a node is covered by a path, denoted n Ep P, if there 
exists a node ns in the path such that n = ns. We say that a node 
n I (1 < l < k) in a parallel program is covered by a set o f  paths 
PATH = (P1,.-. Pk) in threads TI, T2,... Tk, respectively, or simply 
n I E p  PATH, i f n  I Ep e l .  

We represent the set of matching posts of a wait node as M P ( w )  = 
{p l (p ,w)  E Es}  and the set of matching waits of a post node as 
MW(p) = {w I (p, w) E Es} .  We use the symbol "-<" to represent the 
relation between the completion times of instances of two statement 
nodes. We say a -< b if an instance of the node a completes execution 
before an instance of the node b. 

Finally, the problem of finding all-du-path coverage for testing a 
shared memory parallel program can be stated as" Given a shared 
memory parallel program, P R O G  = (T1,T2 . . . .  ,Tn), for each du- 
pair, ( var, i J ), in P R O G ,  find a set of paths P A T H  = (PI , . . .  Pk) n u , n v  

in threads T 1 , T2•... T k, that covers the du-pair ( var, n i ,  n j ), such 
that n / --< nJ. 1 

3 Nondeterminism and the Testing Process 

Nondeterminism is demonstrated by running the same program with 
the same input and observing different behaviors, i.e., different 
sequences of statements being executed. Nondeterminism makes it 
difficult to reproduce a test run, or replay an execution for debugging. 
It also implies that a given test data set may not actually force the 
intended path to be covered during a particular testing run. 

One way to deal with nondeterminism is to perform a controlled 
execution of the program, by having a separate execution control 

lWe focus on finding du-pairs with the define and use in different 
threads; du-pairs within the same thread are a subcase. 
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mechanism that ensures a given sequence of execution. We advocate 
controlled execution tbr reproducing a test when unexpected results 
are produced from a test, but we have not taken this approach to 
the problem of automatically generating and executing test cases to 
expose errors. Instead, we advocate temporal testing for this stage 
of testing. 

We briefly describe our temporal testing paradigm here, and refer 
the reader to [19] for a more detailed description. Temporal testing 
alters the schedule d execution time of program segments in order to 
detect synchroniz~ tion errors. Formally, aprogram test case TC is a 
2-tuple ( P R  O G,,') where I is the input data to the program ff'R O G, 
whereas a temporcrl test case TTC is a 3-tuple (PRO G, I, D) where 
the third component, referred to as timing changes, is a parameter 
for altering the e~c ~cution time of program segments. Based on D, 
the scheduled execution time of certain synchronization instructions 
n, represented as :(n), will be changed for each temporal test and 
the behavior of th: program P R O  G will be observed. 

Temporal testing : s used in conjunction with path testing. For ex- 
ample, temporal a 1-du-path testing can be implemented by locating 
delay points along the du-paths being tested. The goal is to alter the 
scheduled executi m time of all process creation and synchroniza- 
tion events along the du-paths. Delayed execution at these delay 
points is achieve6 by instrumenting the program with dummy com- 
putation statemenI s. A testing tool is used to automatically generate 
and execute the te: nporal test cases. Similarly, new temporal testing 
criteria can be cre~tted by extending other structural testing criteria. 

With the temporal testing approach, the testing process is viewed as 
occurring as follo'vs: 

(1) Generate all-d~-paths statically. 
(2) Execute the 1: rogram multiple times without considering any 
possible timing c~: anges. 
(3) Examine the ~:ace results. If the trace results indicate that dif- 
ferent paths were in fact executed, it is a strong indication that a 
synchronization e:'ror has occurred and the du-path expected to be 
covered may provide some clue about the probable cause. Con- 
trolled execution ~aay be used to reproduce the test. However, even 
if the same du-pat a was covered in multiple execution runs, tempo- 
ral testing should ;till be performed. 
(4) Generate temI~oral test cases with respect to the du-paths. 
(5) Perform tempc,ral testing automatically. 
(6) Examine the r~sults. 

In this paper, we fi ~cus on the first step, i.e., developing an algorithm 
to find all-du-pat!~s :for shared memory parallel programs. The 
results of this pap, Jr can be used for generating temporal test cases 
with respect to tt,e ~dl-du-path coverage criterion. It should be 
noted that it is pos.qble that the path we want to cover is not executed 
during a testing ruT1 due to nondeterminism, because we are not using 
controlled execut:i m; instead, we use automatic multiple executions 
with different ten~poral testings to decrease the chances that the 
intended path will not be covered. 

4 All-du-path Coverage 

In this section, we use some simplified examples to demonstrate 
some of the inhei ent problems to be addressed in finding all-du- 
paths in parallel ~rograms. This list is not necessarily exhaustive, 
but instead mear:, to illustrate the complexity of the problem of 
automatically gen,:rating all-du-paths for parallel programs. 

Figure 2 contains :wo threads, the m a n a g e r  thread and a w o r k e r  

MANAGER: 1 - 2 - 3 - d - 5 - 6 - 7 - 3 - 8  

WOR]KER: 1 0 - 1 1 - 1 2 - 1 3 - 1 5 - 1 1 - 1 2 - 1 4 - 1 5 - 1 1 - 1 6  

Figure 2: Du-pair coverage may cause an infinite wait. 

thread. This figure demonstrates a path coverage that indeed covers 
the du-pair, but does not cover both the post and the wait of a 
matching post and wait. If the post is covered and not a matching 
wait, the program will execute to completion, despite the fact that 
the synchronization is not covered completely. However, if the wait 
is covered and not a matching post, then the program will hang 
with the particular test case. In this example, the w o r k e r  thread 
may not complete execution, whereas the m a n a g e r  thread will 
terminate successfully. The generated path will cause the loop in the 
m a n a g e r  thread to iterate only once, while the loop in the w o r k e r  
thread will iterate twice. This shows how the inconsistency in the 
number of loop iterations may cause one thread to wait infinitely. In 
addition, branch selection at an/fnode can also influence whether 
or not all threads will terminate successfully. 

manage~: 

@ 

PATH COVERAGZ .* 

w o r k e r  

MANAGE~.: 1 - 2  -3  - 4 - 5 - 6 - 7 - 3 - 8  

WORKER: 1 0 - 1 1 - 1 2 - 1 3 - 1 4 - 1 5 - 1 1 - 1 6  

Figure 3: Du-pair is incorrectly covered. 

In figure 3, the generated paths cover both the define (14) and the use 
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(5) nodes, but the use node will be reached before the define node, 
that is, define ¢~ use. If the data flow information reveals that the 
definition ofx  in the w o r k e r  thread should indeed be able to reach 
the use ofx  in the m a n a g e r  thread, then we should attempt to find 
a path coverage that will test this pair. The current path coverage 
does not accomplish this. 

4.1 Test Coverage Classification 

The examples motivate a classification of all-du-path coverage. In 
particular, we classify each du-path coverage generated by an algo- 
rithm for producing all-du-path coverage of a parallel program as 
acceptable or unacceptable, and w-runnable or non-w-runnable. 

4.1.1 Acceptability of a du-path coverage 

We call a set of paths PATH an acceptable du-path coverage, de- 
noted as PATHa, for the du-pair (define, use) in a parallel program 
free of infeasible paths of the sequential programming kind (see the 
later section on infeasible paths), if all of the following conditions 
are satisfied: 

1. define Ep PATH; use Ep PATH, 

2. Vwait nodes w Ep PATH, 3 a post node p E MP(w), such that 
p Ep PATH, 

3. if 3(post,wait) E Es, such that define -4 post -< wait -.< use, 
then post, wait Ep PATH. 

4. Vn j Ep PATH where (ni,n j) E E T, 3n i Ep PATH. 

These conditions ensure that the definition and use are included in 
the path, and that any (post, wait) edge between the threads contain- 
ing the definition and use, and involved in the data flow from the 
definition to the use are included in the path. Moreover, for each 
sink of a thread creation edge, the associated source of the thread 
creation edge is also included in the path. If any of these conditions 
is violated, then the path coverage is considered to be unacceptable. 
For instance, if only the wait is covered in a path coverage and a 
matching post is not, the path coverage is not a PATHa. Figure 3, 
where the define and use are covered in reverse order, shows another 
instance that only satisfies the first two conditions, but fails to satisfy 
the third condition. 

4.1.2 W-runnability of a du-path coverage 

We have seen through the examples that a parallel program may 
cause infinite wait under a given path coverage, even when the 
du-path coverage is acceptable. If a path coverage can be used to 
generate a test case that does not cause an infinite wait in any thread, 
we call the path coverage a w-runnable du-path coverage. When 
a PATH is w-runnable, we represent it as PATHw. Although we 
call a PATH w-runnable, we are not claiming that a PATHw is free 
of errors, such as race conditions, or synchronization errors. More 
formally, a PATHa is w-runnable if all of the following additional 
conditions are satisfied: 

1. For each instance of a wait, ~i Ep PATH, (possibly represented 
by the same node n t Ep PATH), 3 an instance of a post, pS u Ep 
PATH, where/~u C MP(~i). An instance of a wait or post 
is one execution of the wait or post; there may be multiple 
instances of the same wait or post in the program. 

2. ~post nodes pi, p j, and wait nodes w/, w J, Ep PATH such that 
((pi _< w J) V (pJ -.< wi)) A (w i -< pi) A (wJ ..4 p J). 

The first condition ensures that, for each instance of a wait in the 
PATH, there is a matching instance of a post. However, it is not 
required that for every instance of post, a matching wait is covered. 
In other words, the following condition is not required: Vpost nodes 
p Ep PATH, 3 a wait node w E MW(p), such that w Ep PATH. The 
second condition ensures that the generated path is free of deadlock. 

We can develop algorithms to find PATHa automatically. How- 
ever, we utilize user interaction in determining PATHw in the more 
difficult cases, and sometimes have to indicate to the user that we 
cannot guarantee that the execution will terminate on a given test 
case (i.e., path coverage). In this case, the program can still be run, 
but may not terminate. We will find a PATHa and report that this 
path coverage may cause an infinite wait. 

4.2 Infeasible Paths 

Infeasible paths in a graph representation of a program are paths that 
will never be executed given any input data. In control flow graphs 
for a single thread, infeasible paths are due to data dependencies and 
conditionals. In interprocedural graph structures, infeasible paths 
are due to calling a function from multiple points. These kinds 
of infeasible paths can occur in sequential programs, and can also 
occur in parallel programs. In a parallel program, another kind of 
infeasible path can also occur due to synchronization dependencies. 
Infeasible paths due to synchronization dependencies can cause 
deadlock or infinite wait at run-time. 

Like most path finding algorithms, we assume that the paths we 
identify are feasible with respect to the first causes. With regard to 
infeasible paths due to synchronizations, our work uses a slightly 
different characterization of paths, PATHa and PATHw. Our du-path 
coverage algorithm finds paths in a way to guarantee that we will 
have matching synchronizations included in the final paths, that is, 
it finds paths that are PATHa. However, a deadlock situation could 
occur for a path coverage that is a PATHa, but not PATHw. To 
guarantee finding matching synchronizations, we currently assume 
that matching post and wait operations both appear in a program. If 
a program contains a post and no matching wait or vice versa, we 
expect that the compiler will report a warning message prior to the 
execution of our algorithm. 

5 Related Work 

In the context of sequential programs, several researchers have ex- 
amined the problems of generating test cases using path finding as 
well as finding minimum path coverage [3, 11, 1]. All of these 
methods for finding actual paths focus on programs without parallel 
programming features and, therefore, cannot be applied directly to 
finding all-du-path coverage for parallel programs. However, we 
have found that the depth-first search approach and the approach of 
using dominator and post-dominator trees can be used together with 
extension to provide all-du-path coverage for parallel programs. We 
first look at their limitations for providing all-du-path coverage for 
parallel programs when used in isolation. 

Gabow, Maheshwari, and Osterweil [3] showed how to use depth- 
first search (DFS) to find actual paths that connect two nodes in a 
sequential program. When applying DFS aloneto parallel programs, 
we claim that it is not appropriate even for finding PATHa, not to 
mention PATHw. The reason is that although DFS can be applied 
to find a set of paths for covering a du-pair, this approach does 
not cope well with providing coverage for any intervening wait's, 
and the corresponding coverage of their matching post's as required 
to find PATHa. For example, consider a situation where there are 
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more wait nodes to be included while completing the partial path 
for covering the use node. Since the first path is completed and a 
matching post is not included in the original path, the first path must 
be modified to include the post. This is not a straightforward task, 
and becomes a clownfall of using DFS in isolation for providing 
all-du-path coverage for parallel programs. 

Bertolino and M arr~ have developed an algorithm (which we call 
DT-IT) that uses dominator trees (DT) and implied trees (IT) (i.e., 
post-dominator trees) to find a path coverage for all branches in a 
sequential progr~Lm [1]. A dominator tree is a tree that represents 
the dominator relationship between nodes (or edges) in a control 
flow graph, who: e a node n dominates a node m in a control flow 
graph if every pat.h ttom the entry node of the control flow graph to 
m must pass thro Jgh n. Similarly, a node m postdominates a nodep 
if every path fro~.p to the exit node of the control flow graph passes 
through m. 

The DT-IT apprc ack. finds all-branches coverage for sequential pro- 
grams as follows First, a DT and an IT are built for each sequential 
program. Edges n the intersection of the set of all leaves in DT and 
IT, defined as u~constrained edges, are used to find the minimum 
path coverage ba ~ed on the claim that if all unconstrained edges are 
covered by at le~ st one path, all edges are covered. The algorithm 
finds one path t.: cover each unconstrained edge. When one edge 
is selected, one sab-path is found in DT as well as in IT. When one 
node and its par:nt node in DT or IT are not adjacent to each other 
in the control tic,' v graph of the program, users are allowed to define 
their own criteri, for connecting these two nodes to make the path. 
The two sub-patt Ls, one built using DT and the other built using IT, 
are then concatei ~ated together to derive the final path coverage. 

If we try to run th s algorithm to find all-du-path coverage for parallel 
programs, we ne~xl to find a path coverage for all du-pairs instead of 
all-edges, which is a minor modification. However, this approach 
will also run into the same problem as in DFS. That is, if some post 
or wait is reachec! when we are completing a path, we need to adjust 
the path just foc:id to include the matching nodes. In addition, we 
will run into anot aer problem regarding the order in which the define 
and use nodes ai 2 covered in the final path. For instance, in Figure 
3, an incorrect i,ath coverage will be generated using the DT-IT 
approach alone. I'he final path will have define 7~ use. Thus, using 
this method alon ~ cannot guarantee that we find a PATHa. 

Yang and Chung [20] proposed a model to represent the execution 
behavior of a concurrent program, and described a test execution 
strategy, testing ~rocess and a formal analysis of the effectiveness 
of applying pat~7 analysis to detect various faults in a concurrent 
program. An e~ ecution is viewed as involving a concurrent path 
(C-path), which contains the flow graph paths of all concurrent 
tasks. The sync[ ronizations of the tasks are modelled as a concur- 
rent route (C-rou :e) to traverse the concurrent path in the execution, 
by building a ren lezvous graph to represent the possible rendezvous 
conditions. The testing process examines the correctness of each 
concurrent route along all concurrent paths of concurrent programs. 
Their paper a c ~  awledges the difficulty of C-path generation; how- 
ever, the actual methodologies for the selection of C-paths and 
C-routes are not presented in the paper. 

6 A Hybrid Approach 

In this section, ~ e cLescribe our extended "hybrid" approach to find 
the actual path ct verage of a particular du-pair in a parallel program. 

There are actually two disjoint sets of nodes in a path used to cover 
a du-pair in a p~u alIel program: required nodes and optional nodes. 

The set of required nodes includes thepthread_createO calls as well 
as the define node and use node to be covered, and the associatedpost 
and wait with which the partial order define -< use is guaranteed. 
All other nodes on the path are optional nodes for which partial 
orders among them are not set by the requirements for a PATHa. 
However, if a wait is covered by the path, a matching post must 
be covered. For instance, in figure 6, the nodes 2, 4, 7, 25, and 
26 are required nodes, whereas all other synchronization nodes are 
optional. Among the required nodes, the partial orders are uniquely 
identified, whereas the partial orders among the optional nodes are 
not. For example, it is acceptable to include either post3 or post4 
first in a path coverage. We can even include wait 1 later than post4 
in a PATHa. 

The DFS approach is most useful for finding a path that connects two 
nodes whose partial order is known. The DT-IT approach is most 
appropriate for covering nodes whose partial order is not known in 
advance. Therefore, DFS is most useful for finding a path between 
the required nodes, whereas the DT-IT approach is most useful for 
ensuring that the optional nodes are covered. 

Our algorithm consists of two phases. During the first phase, called 
the annotate phase, the depth-first search (DFS) approach is em- 
ployed to cover the required nodes in the PPFG. Then, the DT-IT 
approach is used to cover the optional nodes. After a path to cover 
a node is found, all nodes in the path are annotated with a traversal 
control number (TRN). In the second phase, called the path genera- 
tion phase, the actual path coverage is generated using the traversal 
control annotations. We first describe the data structures utilized in 
the du-pair path finding algorithm, and then present the details of 
the algorithm. 

The algorithm assumes that the individual du-pairs of the paral- 
lel program have been found. Previous work computing reaching 
definitions for shared memory parallel programs has been done by 
Gmnwald and Srinivasan [5]. 

6.1 Data Structures 

The main data structures used in the hybrid algorithm are: (1) 
a PPFG, (2) a working queue per thread to store the post nodes 
that are required in the final path coverage, (3)a traversal control 
number(TRN) associated with every node used to decide which 
node must be included in the final path coverage and how many 
iterations are required for a path through a loop, (4) a reverse post- 
order number (RPO) for each node in the PPFG used in selecting 
a path at loop nodes, (5) a decision queue per if-node, and (6) one 
path queue per thread to store the resulting path. 

6.2 The Du-path Finding Algorithm 

We describe the du-path finding algorithm with respect to finding 
du-pairs in which the define and use are located in different threads. 
The handling o.f du-pairs with the define and use in the same thread 
is a simplification of this algorithm. Figure 4 contains the anno- 
tate_the_graphO algorithm, which accomplishes the annotate phase. 
The traverse_the_graphO algorithm, shown in Figure 5, traverses the 
PPFG and generates the final du-path coverage. We describe each 
step of these algorithms in more detail here. 

Phase 1: Annotating the PPFG. 
Step 1. Initialize the working and decision queues to empty, and set 
TRN of each node to zero. 
Step 2. Use DFS to find a path from the pthread_create of the thread 
containing the define node to the define node, and then from the 
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Algorithm annotate_the_graph0 

Input: A DU-pair, and a PPFG 

Output: Annotated PPFG 

Method: 
1. Initialize TRN's, decision queues, and working queues; 
2. Find a path to cover pthread_create and define nodes using dfs; 

From the define node, search for the use nude using dfs; 
3. Complete the two sub-paths using DT-lT. 
4. For each node in the complete paths: 

Increment TRN by one; 
If node is a WALT, 

Add matching nodes into appropriate working queues, 
If node is an if-node, 

Add the successor node in the path into decision queue; 
5./* process the synchronization nodes */ 

while ( any working queue not empty ) 

{ For each thread, if working queue not empty 
I 

Remove one node from the working queue; 
if the node's TRN is zero 
{ 

Find a path to cover this node 
For each node in the complete path: 

Increment TRN by one; 
If node is a WAIT, 

Add matching nodes into appropriate working queues, 
If node is an if-node, 

Add the successor node in the path into decision queue; 
I } 

} 

Figure  4: Phase 1: A n n o t a t e  the  graph, 

define node to the use node. When a post node is found in the path, 
a matching wait is placed as the next node to be traversed, and the 
search for the use node continues. Upon returning from each DFS0 
call after a wait is traversed, return to the matching post before con- 
tinuing the search for the use node if  not yet found. 
Step 3. Apply DT-IT to complete the sub-paths found in Step 2. To 
complete the sub-path in the thread containing the define node, use 
the dominator tree of the define node and the post-dominator tree of 
the post node that occurs after the define node in the sub-path just 
found. Similarly, to complete the sub-path in the thread containing 
the use node, use the dominator tree of a matching wait of the post 
node and the post-dominator tree of the use node. 
Step 4. For each node covered by either of these two paths, 
(1) increment the node's TRN by one to indicate that the node should 
be traversed at least once. 
(2) If the node is a wait, add a matching post into the working queue 
of the thread where the post is located. 
(3) If the node is an if-node, add the Reverse Post-Order Num- 
ber(RPO) of the successor node within the path into the if-node's 
decision queue to ensure the correct branch selection in phase 2. 
Step 5. While any working queue is not empty, remove one post 
node from a thread's working queue, and find a path to cover the 
node. Increment the TRN of the nodes in that path. In this way, 
the TRN identifies the instances of each node to be covered. This 
is particularly important in finding a path coverage for nodes in- 
side loops, where it might be necessary to traverse some loop body 
nodes several times to ensure that branches inside the loop are cov- 
ered appropriately. Process wait and/f-nodes in this path as in Step 
4. 

Algorithm traverse_the_graphO 

Input: An annotated PPFQ 

Output: A DU-path 
Method: 

For all threads 
{ 

current = begin node of the thread; 
while ( current node's TRN > 0 and 

current is not the end node ) ! 
add the current node to the result DU-path; 
decrement TRN of current node by one; 
if ( current is an if-node ) 

current = first node from decision queue; 
delete the first node in the queue; 

else 
if ( current is a loop node ) 

current = successor with smallest non-zero RIO; 
else 

current = successor node of current; 
} 

} 

F i gure  5: P h a s e  2: G e n e r a t e  the  d u - p a t h  c o v e r a g e  

P h a s e  2: G e n e r a t i n g  a du-pa th .  For each thread, perform the 
following steps: 
Step 1. Let n be the begin node of the thread. 
Step 2. While n's TRN > 0 and n is not the end node, 
Add n to the path queue, which contains the resulting path coverage, 
and decrement n's TRN. I fn  is an if-node, then let the new n be the 
node removed from n's decision queue. Otherwise, if  n is a loop 
node, the successor with the smallest non-zero TRN is chosen to be 
the new n. If the children have the same TRN, then the child with 
the smallest RPO is chosen. Otherwise, i fn  is not an if-node or loop 
node, let new n be the successor ofn.  

6.3 Examples 

In this section, we use two examples to illustrate the hybrid ap- 
proach. The first example illustrates generating a PATHw, while the 
second example illustrates generating a (non-PATHw) PATHa. Both 
examples cover the du-pair with the define of X at node 4 and the 
use of X at node 26 in Figure 6. 

E x a m p l e  1 Generating a PATHw: 
During the second step of the first phase, the required nodes, includ- 
ing the pthread_ereate, define, post2, wait 2, and the use nodes, are 
included in a partial path. The identified partial path is 2-3-4-5-7- 
25-26. During the third step of the first phase, the two sub-paths are 
completed, using the DT-IT approach. The two identified complete 
paths are 1-2-3-4-5-7-8-9-3-11 for manager and 21-22-23-25-26- 
27-28-22-30 for workerl. The TRN for every node along the two 
paths equals 1 after step 4 except the loop node 22 for which the 
TRN is 2. When node 9 was reached during this traversal, nodes 28 
and 35 were put into the working queues for workerl and worker2, 
respectively. When node 28 is taken out of the working queue 
in step 5, it is found to have a nonzero TRN, and thus no more 
paths are added. When node 35 is taken out of the working queue, 
the TRN is zero. Hence, the path 31-32-33-34-35-32-36 is found 
to cover node 35. With the annotated PPFG as input, the second 
phase finds a final path of 1-2-3-4-5-7-8-9-3-11 for manager, 21- 
22-23-25-26-27-28-22-30 for workerl, and 31-32-33-34-35-32-36 
for worker 2. 
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manager worker 1 worker 
2 

Figure 6: Example of the path finding algorithm 

Example 2 Generating a non-PATHw: 
During the seconcL step of the first phase, the required nodes, includ- 
ing the pthread_c,eate, define, post2, wait2, and the use nodes, are 
included in a part~ai path identified as 2-3-4-5-7-25-26. During the 
third step of the :~rst phase, the two sub-paths are completed, and 
found to be 1-2-3.4-5-7-8-9-3-11 for manager and 21-22-23-25-26- 
27-29-22-30 for ;vorkerl. The TRN for every node along the two 
paths equals 1 aft Jr step 4 except for the loop node 22; the TRN for 
node 22 equals 2 When node 9 was reached during this traversal, 
nodes 28 and 35 ,~ere put into the working queues. Similarly, during 
the fifth step ofth~ first phase, two paths 21-22-23-25-26-27-28-22- 
30 and 31-32-33-34-35-32-36, are found to cover nodes 28 and 35, 
respectively. Th,~ final TRN's for this example label each node in 
Figure 6. The sec~ m6 phase finds final paths of 1-2-3-4-5-7-8-9-3-11 
for manager, 21.22-23-25-26-27-29-22-23-25-26-27-28-22-30 for 
worker I and 31-~ 2-33-34-35-32-36 for worker2. This set of paths 
is not w-runnable because worker I has an infinite wait (at node 25). 

It should be note t that regardless of the path constructed, the user 
will have to validate that the w property holds. 

6.4 Correctness and Complexity 

Given a du-pair !n a parallel program where the define node and 
the use node ar~ located in two different threads, we show that 
this algorithm in :leed will terminate and find a PATHa. We first 
introduce some h rranas before we give the final proof. 

Lemma 1: TRN l,reserves the number of required traversals of each 
node within a lo~ 0 body. 

During the first phase, the TRN of a node is incremented by one 
each time a path is generated that includes that node. Therefore, 

the number of traversals of each node in paths found during the first 
phase is preserved by the TRN. Although the number of traversals 
during the first phase is preserved, we are not claiming that these 
nodes will indeed be traversed during the second phase that same 
number of times. For nodes outside of a loop body, each node will 
be traversed at most as many times as its TRN. But a node may not 
need to be traversed that many times because the path generation 
phase may reach the End node before the TRN of all nodes becomes 
zero. Moreover, if there is no loop node in a program, only required 
nodes will be traversed as many times as the TRN indicates. 

Lemma 2: The decision queue and TRN of an if-node guarantee 
that the same sequence of branches selected during the frst  phase 
will be selected during the second phase. 

When an if-node is found in a path during the first phase, one branch 
is stored into the decision queue at that time. Hence, the number 
of branches in the decision queue of a given if-node is equal to the 
TRN of that if-node. Each time the if-node is traversed during the 
second phase, one node is taken out of the decision queue and the 
TRN of the if-node is decremented by one. Therefore, the sequence 
that a branch is selected is preserved. 

Lemma 3: D FS used during the first phase ensures define -< post -< 
wait -< use in the final generated path. 

During the first phase, the required nodes will be marked by DFS 
prior to any other nodes in the graph. This ensures that necessary 
branches are stored in the decision queues first. By Lemma 2, these 
branches will be traversed first during the second phase. Hence, 
these nodes will be traversed in the correct order as given by the 
relationships above. Therefore, Lemma 3 is valid. 

Lemma 4" The working queues and TRN together guarantee the 
termination of the Du-path Finding Algorithm. 

We must show that both phases terminate. 
Phase I Termination: We use mathematical induction on m, where 
m represents the total number of pairs of synchronization nodes 
covered in a path coverage. 
Base case: m = 1. Since there is only one pair of synchronization 
calls, the required ones, they will be included in the path generated 
by the DFS. The completion of the two partial paths will automat- 
icaily terminate since there are no extra post or wait's involved. 
Now, assume Lemma 4 is true when m = k where k is an integer 
greater than 1. We need to show that Lemma 4 is also true when 
m = k + 1. If the post and wait have been traversed previously, the 
TRN of these nodes will be greater than zero. Hence, they will 
not be included again during the first phase. When we generate a 
new path to cover this pair of post and wait nodes, if they currently 
have TRN=0, all other pairs of synchronization nodes will have 
been covered. (by the induction step) Hence, this new pair of syn- 
chronization calls will not trigger an unlimited number of actions. 
Therefore, the annotation phase will terminate. 
Phase 2 Termination: Since the TRN for each node must be tra- 
versed is a finite integer, and the TRN is decremented each time 
it is traversed during phase 2, the traversai during phase 2 will not 
iterate forever. Whenever a node with zero TRN or the End node is 
reached, the path generation phase terminates. 

Finally, we show the proof of the following theorem. 

Theorem 1: Given a du-pair in a shared memory, parallel program, 
the hybrid approach terminates and finds a PATHa. 

Proof: (1) By Lemma 4, the hybrid approach terminates. (2) To 
show that a PATHa is generated, we must show that the conditions 
described in the definition of PATHa are satisfied. By Lemma 1, 
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Lemma 2, and Lemma 3, we can conclude that the define, use, the 
required post, and wait nodes will be covered in the correct order. 
Step 1 of Phase 1 ensures that all appropriate pthread_create calls 
are covered. Step 5 ensures that a matching post node regarding 
each wait node included in the path is also covered. Therefore, all 
conditions for a PATHa are satisfied. Q.E.D. 

The running time of the hybrid approach includes the time spent 
searching for the required nodes and time spent generating the final 
path coverage. We assume that the dominator/implied trees and the 
du-pairs have been provided by an optimizing compiler. 

Theorem 2: For a given G = (V, E), and a du-pair (d, u), the total 
running time of the du-path finding algorithm is equal to 0(2 * k* 
(IV[ + IE[)), where the total number of post or the wait calls is 
denoted by k. 

Proof: The running time for searching for the required nodes is 
equal to O(IV I + IEI). To complete the two partial paths, the running 
time is equal to O(2 * k * ( IV] + I EI) ), where the total number of post 
or the wait calls is denoted by k. Finally the second phase takes 
time 0(2 * k* ([VI + ]El)) to finish. Hence, the total running time is 
equal to O(2.  k .  (IV I + [E I)). For a given graph, usually the number 
of edges is greater than that of the nodes. Then, the running time is 
equal to O(2*k .  IEI). Q.E.D. 

7 Other Parallel Paradigms 

7.1 Rendezvous communication 

Among other researchers, Long and Clarke developed a data flow 
analysis technique for concurrent programs[9]. After their data 
flow analysis is performed, we can apply a modified version of our 
algorithm to find aU-du-path coverage for a concurrent program 
with rendezvous communication. In particular, we need to modify 
the following: (1) construction of the PPFG, (2) definition of path 
acceptability, and (3) the all-du-path finding algorithm. 

First, to accommodate the request and accept operations in con- 
current programs to achieve rendezvous communication, the PPFG 
needs to include a directed edge from a request to an accept node. 
Secondly, since the execution of a request is synchronous, the sec- 
ond condition in the definition of PATHa must be replaced by the 
following two conditions: 

2a. Vaccept nodes a ~p PATH, 3 a request node r E MR(a), such 
that p Ep PATH, and 

2b. Vrequest nodes r Ep PATH, 3 a accept node a E MA(r), such 
that a Ep PATH. 

The set MR(a) is defined as the set of matching requests for the 
accept node a; the set MA(r) is defined as the set of matching 
accepts for the request node r. 

Finally, during the first phase of the algorithm, whenever a request 
o r  an accept is found, the matching node must be added into the 
working queue. 

7.2 Message Passing Programs 

For analyzing message passing programs, a data flow analysis sim- 
ilar to interprocedural analysis for sequential programs is needed to 
compute the define-use pairs across processes. Several researchers 
have developed interprocedural reaching definitions data flow analy- 
sis techniques, even in the presence of aliasing in C programs [ 12, 6]. 
Although this analysis may find define-use pairs that may not ac- 

tually occur during each execution of the program, the reaching 
definition information is sufficient for program testing. After this 
information is computed, we can apply our algorithm to find all-du- 
path coverage for a given C program with message passing library 
calls. The Message Passing Interface(MPI)[4] standard is a library 
of routines to achieve various types of inter-process communication, 
i.e., synchronous or asynchronous send~receive operations. 

To find ail-du-path coverage for message passing programs, we 
need to identify the type of send or receive operations first, i.e., 
synchronous or asynchronous. If the send operation is synchronous, 
the definition of a PATHa must be modified to include both the send 
and the matching receive in the path coverage similar to the change 
made for supporting rendezvous-communication parallel programs. 
If the send is asynchronous, we only need to replace post by send 
in this paper. For each synchronous receive operation, we need to 
replace the wait by a receive in our algorithms and definitions. 

8 The della pasta Tool 

The algorithm described in this paper has been incorporated into 
della pasta, the prototype tool that we are building for parallel soft- 
ware testing. The objective is to demonstrate that the process of test 
data generation can be partially automated, and that the same tool 
can provide valuable information in response to programmer queries 
regarding testing. The current major functions of this tool are: (1) 
finding all du-pairs in the parallel program, (2) finding all-du-path 
coverage to cover du-pairs specified by the user, (3) displaying all- 
du-path coverage in the graphic or text mode as specified by the 
user, and (4) adjusting a path coverage when desired by the user. 

della pasta consists of two major components: the static analyzer 
which accepts a file name and finds all du-pairs as well as the 
all-du-path coverage for each du-pair, and the path handler which 
interacts with the user to display the PPFG, a path coverage, and 
accept commands for displaying individual du-pair coverages and 
for modifying a path. The static analyzer uses a modified version of 
the Grunwald and Srinivasan algorithm[5] to find du-pairs in parallel 
programs of this model, and is implemented using the compiler 
optimizer generating tool called nsharlit, which is part of the SUIF 
compiler infrastructure [8]. The path handler is built on top of dflo 
which is a data-flow equation visualizing tool developed at Oregon 
Graduate Institute. 2 

The user interface of della pasta is illustrated in figure 7. On the left 
of the screen, the PPFG is illustrated; on the right, the corresponding 
textual source code is shown. A user can resize the data flow graph 
as desired. The currently selected def-use pair is shown at the top of 
the screen. The corresponding du-pair path coverage is depicted in 
the PPFG as well as in the text as highlighted nodes and statements, 
respectively. Clicking on any node in the PPFG will pop up an extra 
window with some information about the node, and allow the user 
to modify a path coverage. 

In this example, a reader/writer program is illustrated in which 
the main thread creates three additional threads: two readers and 
one writer. The main thread then acts as one writer itself and 
communicates with one of the two readers just created. These two 
pairs of readers/writers will work independently in parallel. The 
du-pair coverage shown in this example only involves two of the 4 
threads in the program. 

We are currently extending della pasta to use the du-pair coverage 

2This tool can be downloaded from the Internet. Refer to the 
web site http:llwww.cse.ogi.edu:8OISparseldflo.html for details. 
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exi t  { I ) ;  

{ 

void 
writerlO 
{ 
Int. err'; 

Figure 7: della pasta user interface 
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information already available through our static analyzer to answer 
queries of the following kind: Will the test case execute success- 
fully without infinite walt caused by the path coverage? What other 
du-pairs does a particular path coverage cover? We are also in- 
corporating our temporal testing techniques [17] into the tool in 
order to provide testing aid for delayed execution in addition to the 
traditional all-du-path testing. 

9 Summary and Future Work 

To our knowledge, this is the first effort to apply a sequential testing 
criterion to shared memory or message passing parallel programs. 
Our contributions include sorting out the problems of providing 
all-du-path coverage for parallel programs, classifying coverages, 
identifying the limitations of current path coverage techniques in 
the realm of parallel programs, developing an algorithm that suc- 
cessfully finds all-du-path coverage for shared memory parallel 
programs, showing that it can be modified for message passing 
and rendezvous communication, and demonstrating its effective- 
ness through implementation of a testing tool. 

The all-du-path coverage algorithm presented in this paper has some 
limitations. The all-du-path algorithm requires that a PPFG be 
constructed statically. If a PPFG cannot be constructed statically 
to represent the execution model of a program, the analysis that 
constructs the du-pairs may not produce meaningful du-pairs. Thus, 
the number of w o r k e r  threads is currently assumed to be known 
at static analysis time. In the case where a clear operation is used 
to clear an event before or after the wait is issued, our analysis will 
report more du-pairs than needed. In testing, this only implies that 
we indicate more test cases than really needed. 

We are in the process of examining these limitations, while exper- 
imentally analyzing the effectiveness of fault detection for parallel 
programs using the all-du-paths criterion with della pasta, and 
investigating other structural testing criteria for testing parallel pro- 
grams. 
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