
AII-du-path Coverage for Parallel Programs
Cheer-Sun D. 'fang Amie L. Souter Lori L. Pollock

Department of Computer and Information Sciences
University of Delaware, Newark, DE 19716

(302) 831-1953 (302) 631-8458 (Fax)
{yang,souter, pollock} @cis.udel.edu

Abstract

One significant c!~allenge in bringing the power of parallel machines
to application pr~grammers is providing them with a suite of soft-
ware tools simila'to the tools that sequential programmers currently
utilize. In partic~dar, automatic or semi-automatic testing tools for
parallel program:~ are lacking. This paper describes our work in
automatic gener~ tio:a of all-du-paths for testing parallel programs.
Our goal is to detaonstrate that, with some extension, sequential test
data adequacy cr~ teria are still applicable to parallel program testing.
The concepts and algorithms in this paper have been incorporated
as the foundatior of our DELaware PArallel Software Testing Aid,
della pasta.

Keywords: parallel programming, testing tool, all-du-path cover-
age

1 Introduction

Recent trends in :omputer architecture and computer networks sug-
gest that parallelism will pervade workstations, personal comput-
ers, and network clusters, causing parallelism to become available
to more than jus: the users of traditional supercomputers. Experi-
ence with using iJarallelizing compilers and automatic paralleliza-
tion tools has st". own that these tools are often limited by the un-
derlying sequent al nature of the original program; explicit parallel
programming by the user replacing sequential algorithms by parallel
algorithms is often needed to take utmost advantage of these modem
systems. A majzr Obstacle to users in ensuring the correctness and
reliability of the r parallel software is the current lack of software
testing tools for ' his paradigm of programming.

Researchers haw studied issues regarding the analysis and testing of
concurrent progr 1ms that use rendezvous communication. A known
hurdle for applyi ag traditional testing approaches to testing parallel

Prepared tL' ough collaborative participation in the Advanced
Telecommunical:.ons/Information Distribution Research Program
(ATIRP) Consortium sponsored by the U.S. Army Research Labo-
ratory under Cot,perative Agreement DAAL01-96-2-0002.

Permission to make ,ligital/hard copies of all or part of this material for
personal or classroor: use is granted without fee provided that the copies
are not made or dist.- buted for profit or commercial advantage, the copy-
right notice, the title ,fthe publication and its date appear, and notice is
given that copyright s by permission of the ACM, Inc. To copy otherwise,
to republish, to post, .n servers or to redistribute to lists, requires specific
permission and/or feL.
ISSTA 98 Clea~ ater Beach Florida USA
Copyright 1998 0-8~ 791.-971-8/98/03..$5.00

programs is the nondeterministic nature of these programs. Some
researchers have focused on solving this problem[13, 15], while
others propose state-oriented program testing criteria for testing
concurrent programs[14, 10]. Our hypothesis is that, with some
extension, sequential test data adequacy criteria are still applicable
to parallel program testing of various models of communication.

Although many new parallel programming languages and libraries
have been proposed to generate and manage multiple processes
executing simultaneously on multiple processors, they can be cate-
gorized by their synchronization and communication mechanisms.
Message passing parallel programming accomplishes communica-
tion and synchronization through explicit sending and receiving of
messages between processes. Message passing operations can be
blocking or nonblocking. Shared memory parallel programming
uses shared variables for communication, and event synchroniza-
tion operations.

In this paper, we focus on the applicability of one of the major testing
criteria, all-du-path testing[16], to both shared memory and message
passing parallel programming. In particular, we examine the prob-
lem of finding all-du-path coverage for testing a parallel program.
The ultimate goal is to be able to generate test cases automatically
for testing programs adequately according to the all-du-path criteria.
Based on this criterion, all define-use associations in a program will
be covered by at least one test case. The general procedure for find-
ing a du-palr coverage begins with finding du-pairs in a program.
For each du-pair, a path is then generated to cover the specific du-
pair. Finally, test data for testing the path is produced [2][7]. This
testing procedure has been well established for sequential programs;
however, there is currently no known method for determining the
all-du-path coverage for parallel programs. Moreover, the issues
to be addressed toward developing such algorithms are not well
defined.

We present our algorithms for shared memory parallel programs,
and then discuss the modifications necessary for the message pass-
ing paradigm. We have been building a testing tool for parallel
software, the Delaware Parallel Software Testing Aid, called delia
pasta, to illustrate the effectiveness and usefulness of our tech-
niques, della pasta takes a shared memory parallel program as
input, and interactively allows the user to visually examine the all-
du-path test coverages, pose queries about the various test coverages,
and modify the test coverage paths as desired. In our earlier paper,
we focused strictly on the all-du-path finding algorithm[18].

We begin with a description of the graph representation of a parallel
program used in our work. We then describe our testing paradigm
and how we cope with the nondeterministie nature of parallel pro-
grams during the testing process. We discuss the major problems
in providing all-du-path coverage for shared memory parallel pro-
grams, and a set of conditions to be used in judging the effec-

153

http://crossmark.crossref.org/dialog/?doi=10.1145%2F271771.271804&domain=pdf&date_stamp=1998-03-01
JM233333
高亮

JM233333
高亮

JM233333
高亮

tiveness of all-du-path testing algorithms. Current approaches to
aU-du-path coverage for sequential programs of closest relevance
to our work are then discussed. We present our algorithm for find-
ing an all-du-path coverage for shared memory parallel programs,
which combines and extends previous methods for sequential pro-
grams. Modification of our data structures and algorithms for other
parallel paradigms is discussed followed by the description of the
della pasta tool• Finally, a summary of contributions and future
directions are stated•

2 Program Model and Notation

The parallel program model that we use in this paper consists of
multiple threads of control that can be executed simultaneously. A
thread is an independent sequence of execution within a parallel
program, (i.e., a subprocess of the parallel process, where a process
is a program in execution)• The communication between two threads
is achieved through shared variables; the synchronization between
two threads is achieved by calling post and wait system calls; and
thread creation is achieved by calling thepthread_create system call.

We assume that the execution environment supports maximum par-
allelism. In other words, each thread is executed in parallel inde-
pendently until a wait node is reached. This thread halts until a
matching post is executed. The execution of post always succeeds
without waiting for any other program statements.

Formally, a shared memory parallel program can be defined as
follows: P R O G = (TI,T2,... ,Tn), where 7),(1 _< i _< n) represents
n (> 2) threads. Moreover, T 1 is defined as the manager thread while
all other threads are defined as worker threads, which are created
when apthread_createO system call is issued•

, ®
1

1 I I Cres . t :Q

1
I = - - . I

I

1

Id=.!x÷,
1

-- q p o s t

I

G I

Figure 1: Example of a PPFG

To represent the control flow of a parallel program, a Parallel Pro-

gram Flow Graph (PPFG) is defined to be a graph G = (V,E) in
which V is the set of nodes representing statements in the program,
and E consists of three sets of edges Es, ET, and Et. The set Et
consists of intra-thread control flow edges (m z, ni), where m and n
are nodes in thread 7). The set Es consists of synchronization edges
(post i, wait J), where post ~ is a post statement in thread 7), waitJ is a
wait statement in thread Tj, and i ~ j . The set E T consists of thread
creation edges (n i, n J), where n i is a call statement in thread 7) to
the pthread_createO function, and n j is the first statement in thread

We define apath Pi(ni~, nik) or simply Pi, within a thread 7) to be an

alternating sequence of nodes and intra-thread edges n i l , i i e u I , nu 2,
i i i i i •.., of nodes nu~ , nu2 , . . . , nuk , where eu2 , nuk or simply a sequence

uw is the unique node index in a unique numbering of the nodes
and edges in the control flow graph of the thread 7) (e.g., a reverse
postorder numbering).

Figure 1 illustrates a PPFG. All solid edges are intra-thread edges.
Edges in E S and ET are represented by dotted edges. This diagram
also shows a define node d of variable m, i.e., m = x + y, and a use
node u, i.e., z = 3 * m. The sequence begin - i f - e n d i f - loop -
wait - u - loop - end is a path.

A du-pair is a triplet (var, n i , n j), where n / is the u th node in
thread 7) in the unique numbering of the nodes in thread 7), and the
program variable var is defined in the statement represented by node
n/ , while the program variable var is referenced in the v th node in
the unique ordering of nodes in thread Tj.

In a sequential program or a single thread T/of a parallel program,
we say that a node is covered by a path, denoted n Ep P, if there
exists a node ns in the path such that n = ns. We say that a node
n I (1 < l < k) in a parallel program is covered by a set o f paths
PATH = (P1,.-. Pk) in threads TI, T2,... Tk, respectively, or simply
n I E p PATH, i f n I Ep e l .

We represent the set of matching posts of a wait node as M P (w) =
{p l (p ,w) E Es} and the set of matching waits of a post node as
MW(p) = {w I (p, w) E Es} . We use the symbol "-<" to represent the
relation between the completion times of instances of two statement
nodes. We say a -< b if an instance of the node a completes execution
before an instance of the node b.

Finally, the problem of finding all-du-path coverage for testing a
shared memory parallel program can be stated as" Given a shared
memory parallel program, P R O G = (T1,T2 ,Tn), for each du-
pair, (var, i J), in P R O G , find a set of paths P A T H = (PI , . . . Pk) n u , n v

in threads T 1 , T2•... T k, that covers the du-pair (var, n i , n j), such
that n / --< nJ. 1

3 Nondeterminism and the Testing Process

Nondeterminism is demonstrated by running the same program with
the same input and observing different behaviors, i.e., different
sequences of statements being executed. Nondeterminism makes it
difficult to reproduce a test run, or replay an execution for debugging.
It also implies that a given test data set may not actually force the
intended path to be covered during a particular testing run.

One way to deal with nondeterminism is to perform a controlled
execution of the program, by having a separate execution control

lWe focus on finding du-pairs with the define and use in different
threads; du-pairs within the same thread are a subcase.

154

JM233333
下划线

JM233333
下划线

JM233333
下划线

JM233333
下划线

JM233333
下划线

JM233333
下划线

JM233333
下划线

JM233333
下划线

JM233333
高亮

JM233333
高亮

JM233333
高亮

JM233333
高亮

JM233333
下划线

JM233333
下划线

JM233333
下划线

JM233333
下划线

JM233333
高亮

mechanism that ensures a given sequence of execution. We advocate
controlled execution tbr reproducing a test when unexpected results
are produced from a test, but we have not taken this approach to
the problem of automatically generating and executing test cases to
expose errors. Instead, we advocate temporal testing for this stage
of testing.

We briefly describe our temporal testing paradigm here, and refer
the reader to [19] for a more detailed description. Temporal testing
alters the schedule d execution time of program segments in order to
detect synchroniz~ tion errors. Formally, aprogram test case TC is a
2-tuple (P R O G,,') where I is the input data to the program ff'R O G,
whereas a temporcrl test case TTC is a 3-tuple (PRO G, I, D) where
the third component, referred to as timing changes, is a parameter
for altering the e~c ~cution time of program segments. Based on D,
the scheduled execution time of certain synchronization instructions
n, represented as :(n), will be changed for each temporal test and
the behavior of th: program P R O G will be observed.

Temporal testing : s used in conjunction with path testing. For ex-
ample, temporal a 1-du-path testing can be implemented by locating
delay points along the du-paths being tested. The goal is to alter the
scheduled executi m time of all process creation and synchroniza-
tion events along the du-paths. Delayed execution at these delay
points is achieve6 by instrumenting the program with dummy com-
putation statemenI s. A testing tool is used to automatically generate
and execute the te: nporal test cases. Similarly, new temporal testing
criteria can be cre~tted by extending other structural testing criteria.

With the temporal testing approach, the testing process is viewed as
occurring as follo'vs:

(1) Generate all-d~-paths statically.
(2) Execute the 1: rogram multiple times without considering any
possible timing c~: anges.
(3) Examine the ~:ace results. If the trace results indicate that dif-
ferent paths were in fact executed, it is a strong indication that a
synchronization e:'ror has occurred and the du-path expected to be
covered may provide some clue about the probable cause. Con-
trolled execution ~aay be used to reproduce the test. However, even
if the same du-pat a was covered in multiple execution runs, tempo-
ral testing should ;till be performed.
(4) Generate temI~oral test cases with respect to the du-paths.
(5) Perform tempc,ral testing automatically.
(6) Examine the r~sults.

In this paper, we fi ~cus on the first step, i.e., developing an algorithm
to find all-du-pat!~s :for shared memory parallel programs. The
results of this pap, Jr can be used for generating temporal test cases
with respect to tt,e ~dl-du-path coverage criterion. It should be
noted that it is pos.qble that the path we want to cover is not executed
during a testing ruT1 due to nondeterminism, because we are not using
controlled execut:i m; instead, we use automatic multiple executions
with different ten~poral testings to decrease the chances that the
intended path will not be covered.

4 All-du-path Coverage

In this section, we use some simplified examples to demonstrate
some of the inhei ent problems to be addressed in finding all-du-
paths in parallel ~rograms. This list is not necessarily exhaustive,
but instead mear:, to illustrate the complexity of the problem of
automatically gen,:rating all-du-paths for parallel programs.

Figure 2 contains :wo threads, the m a n a g e r thread and a w o r k e r

MANAGER: 1 - 2 - 3 - d - 5 - 6 - 7 - 3 - 8

WOR]KER: 1 0 - 1 1 - 1 2 - 1 3 - 1 5 - 1 1 - 1 2 - 1 4 - 1 5 - 1 1 - 1 6

Figure 2: Du-pair coverage may cause an infinite wait.

thread. This figure demonstrates a path coverage that indeed covers
the du-pair, but does not cover both the post and the wait of a
matching post and wait. If the post is covered and not a matching
wait, the program will execute to completion, despite the fact that
the synchronization is not covered completely. However, if the wait
is covered and not a matching post, then the program will hang
with the particular test case. In this example, the w o r k e r thread
may not complete execution, whereas the m a n a g e r thread will
terminate successfully. The generated path will cause the loop in the
m a n a g e r thread to iterate only once, while the loop in the w o r k e r
thread will iterate twice. This shows how the inconsistency in the
number of loop iterations may cause one thread to wait infinitely. In
addition, branch selection at an/fnode can also influence whether
or not all threads will terminate successfully.

manage~:

@

PATH COVERAGZ .*

w o r k e r

MANAGE~.: 1 - 2 -3 - 4 - 5 - 6 - 7 - 3 - 8

WORKER: 1 0 - 1 1 - 1 2 - 1 3 - 1 4 - 1 5 - 1 1 - 1 6

Figure 3: Du-pair is incorrectly covered.

In figure 3, the generated paths cover both the define (14) and the use

155

JM233333
高亮

JM233333
下划线

JM233333
下划线

JM233333
高亮

JM233333
下划线

(5) nodes, but the use node will be reached before the define node,
that is, define ¢~ use. If the data flow information reveals that the
definition ofx in the w o r k e r thread should indeed be able to reach
the use ofx in the m a n a g e r thread, then we should attempt to find
a path coverage that will test this pair. The current path coverage
does not accomplish this.

4.1 Test Coverage Classification

The examples motivate a classification of all-du-path coverage. In
particular, we classify each du-path coverage generated by an algo-
rithm for producing all-du-path coverage of a parallel program as
acceptable or unacceptable, and w-runnable or non-w-runnable.

4.1.1 Acceptability of a du-path coverage

We call a set of paths PATH an acceptable du-path coverage, de-
noted as PATHa, for the du-pair (define, use) in a parallel program
free of infeasible paths of the sequential programming kind (see the
later section on infeasible paths), if all of the following conditions
are satisfied:

1. define Ep PATH; use Ep PATH,

2. Vwait nodes w Ep PATH, 3 a post node p E MP(w), such that
p Ep PATH,

3. if 3(post,wait) E Es, such that define -4 post -< wait -.< use,
then post, wait Ep PATH.

4. Vn j Ep PATH where (ni,n j) E E T, 3n i Ep PATH.

These conditions ensure that the definition and use are included in
the path, and that any (post, wait) edge between the threads contain-
ing the definition and use, and involved in the data flow from the
definition to the use are included in the path. Moreover, for each
sink of a thread creation edge, the associated source of the thread
creation edge is also included in the path. If any of these conditions
is violated, then the path coverage is considered to be unacceptable.
For instance, if only the wait is covered in a path coverage and a
matching post is not, the path coverage is not a PATHa. Figure 3,
where the define and use are covered in reverse order, shows another
instance that only satisfies the first two conditions, but fails to satisfy
the third condition.

4.1.2 W-runnability of a du-path coverage

We have seen through the examples that a parallel program may
cause infinite wait under a given path coverage, even when the
du-path coverage is acceptable. If a path coverage can be used to
generate a test case that does not cause an infinite wait in any thread,
we call the path coverage a w-runnable du-path coverage. When
a PATH is w-runnable, we represent it as PATHw. Although we
call a PATH w-runnable, we are not claiming that a PATHw is free
of errors, such as race conditions, or synchronization errors. More
formally, a PATHa is w-runnable if all of the following additional
conditions are satisfied:

1. For each instance of a wait, ~i Ep PATH, (possibly represented
by the same node n t Ep PATH), 3 an instance of a post, pS u Ep
PATH, where/~u C MP(~i). An instance of a wait or post
is one execution of the wait or post; there may be multiple
instances of the same wait or post in the program.

2. ~post nodes pi, p j, and wait nodes w/, w J, Ep PATH such that
((pi _< w J) V (pJ -.< wi)) A (w i -< pi) A (wJ ..4 p J).

The first condition ensures that, for each instance of a wait in the
PATH, there is a matching instance of a post. However, it is not
required that for every instance of post, a matching wait is covered.
In other words, the following condition is not required: Vpost nodes
p Ep PATH, 3 a wait node w E MW(p), such that w Ep PATH. The
second condition ensures that the generated path is free of deadlock.

We can develop algorithms to find PATHa automatically. How-
ever, we utilize user interaction in determining PATHw in the more
difficult cases, and sometimes have to indicate to the user that we
cannot guarantee that the execution will terminate on a given test
case (i.e., path coverage). In this case, the program can still be run,
but may not terminate. We will find a PATHa and report that this
path coverage may cause an infinite wait.

4.2 Infeasible Paths

Infeasible paths in a graph representation of a program are paths that
will never be executed given any input data. In control flow graphs
for a single thread, infeasible paths are due to data dependencies and
conditionals. In interprocedural graph structures, infeasible paths
are due to calling a function from multiple points. These kinds
of infeasible paths can occur in sequential programs, and can also
occur in parallel programs. In a parallel program, another kind of
infeasible path can also occur due to synchronization dependencies.
Infeasible paths due to synchronization dependencies can cause
deadlock or infinite wait at run-time.

Like most path finding algorithms, we assume that the paths we
identify are feasible with respect to the first causes. With regard to
infeasible paths due to synchronizations, our work uses a slightly
different characterization of paths, PATHa and PATHw. Our du-path
coverage algorithm finds paths in a way to guarantee that we will
have matching synchronizations included in the final paths, that is,
it finds paths that are PATHa. However, a deadlock situation could
occur for a path coverage that is a PATHa, but not PATHw. To
guarantee finding matching synchronizations, we currently assume
that matching post and wait operations both appear in a program. If
a program contains a post and no matching wait or vice versa, we
expect that the compiler will report a warning message prior to the
execution of our algorithm.

5 Related Work

In the context of sequential programs, several researchers have ex-
amined the problems of generating test cases using path finding as
well as finding minimum path coverage [3, 11, 1]. All of these
methods for finding actual paths focus on programs without parallel
programming features and, therefore, cannot be applied directly to
finding all-du-path coverage for parallel programs. However, we
have found that the depth-first search approach and the approach of
using dominator and post-dominator trees can be used together with
extension to provide all-du-path coverage for parallel programs. We
first look at their limitations for providing all-du-path coverage for
parallel programs when used in isolation.

Gabow, Maheshwari, and Osterweil [3] showed how to use depth-
first search (DFS) to find actual paths that connect two nodes in a
sequential program. When applying DFS aloneto parallel programs,
we claim that it is not appropriate even for finding PATHa, not to
mention PATHw. The reason is that although DFS can be applied
to find a set of paths for covering a du-pair, this approach does
not cope well with providing coverage for any intervening wait's,
and the corresponding coverage of their matching post's as required
to find PATHa. For example, consider a situation where there are

156

JM233333
下划线

more wait nodes to be included while completing the partial path
for covering the use node. Since the first path is completed and a
matching post is not included in the original path, the first path must
be modified to include the post. This is not a straightforward task,
and becomes a clownfall of using DFS in isolation for providing
all-du-path coverage for parallel programs.

Bertolino and M arr~ have developed an algorithm (which we call
DT-IT) that uses dominator trees (DT) and implied trees (IT) (i.e.,
post-dominator trees) to find a path coverage for all branches in a
sequential progr~Lm [1]. A dominator tree is a tree that represents
the dominator relationship between nodes (or edges) in a control
flow graph, who: e a node n dominates a node m in a control flow
graph if every pat.h ttom the entry node of the control flow graph to
m must pass thro Jgh n. Similarly, a node m postdominates a nodep
if every path fro~.p to the exit node of the control flow graph passes
through m.

The DT-IT apprc ack. finds all-branches coverage for sequential pro-
grams as follows First, a DT and an IT are built for each sequential
program. Edges n the intersection of the set of all leaves in DT and
IT, defined as u~constrained edges, are used to find the minimum
path coverage ba ~ed on the claim that if all unconstrained edges are
covered by at le~ st one path, all edges are covered. The algorithm
finds one path t.: cover each unconstrained edge. When one edge
is selected, one sab-path is found in DT as well as in IT. When one
node and its par:nt node in DT or IT are not adjacent to each other
in the control tic,' v graph of the program, users are allowed to define
their own criteri, for connecting these two nodes to make the path.
The two sub-patt Ls, one built using DT and the other built using IT,
are then concatei ~ated together to derive the final path coverage.

If we try to run th s algorithm to find all-du-path coverage for parallel
programs, we ne~xl to find a path coverage for all du-pairs instead of
all-edges, which is a minor modification. However, this approach
will also run into the same problem as in DFS. That is, if some post
or wait is reachec! when we are completing a path, we need to adjust
the path just foc:id to include the matching nodes. In addition, we
will run into anot aer problem regarding the order in which the define
and use nodes ai 2 covered in the final path. For instance, in Figure
3, an incorrect i,ath coverage will be generated using the DT-IT
approach alone. I'he final path will have define 7~ use. Thus, using
this method alon ~ cannot guarantee that we find a PATHa.

Yang and Chung [20] proposed a model to represent the execution
behavior of a concurrent program, and described a test execution
strategy, testing ~rocess and a formal analysis of the effectiveness
of applying pat~7 analysis to detect various faults in a concurrent
program. An e~ ecution is viewed as involving a concurrent path
(C-path), which contains the flow graph paths of all concurrent
tasks. The sync[ronizations of the tasks are modelled as a concur-
rent route (C-rou :e) to traverse the concurrent path in the execution,
by building a ren lezvous graph to represent the possible rendezvous
conditions. The testing process examines the correctness of each
concurrent route along all concurrent paths of concurrent programs.
Their paper a c ~ awledges the difficulty of C-path generation; how-
ever, the actual methodologies for the selection of C-paths and
C-routes are not presented in the paper.

6 A Hybrid Approach

In this section, ~ e cLescribe our extended "hybrid" approach to find
the actual path ct verage of a particular du-pair in a parallel program.

There are actually two disjoint sets of nodes in a path used to cover
a du-pair in a p~u alIel program: required nodes and optional nodes.

The set of required nodes includes thepthread_createO calls as well
as the define node and use node to be covered, and the associatedpost
and wait with which the partial order define -< use is guaranteed.
All other nodes on the path are optional nodes for which partial
orders among them are not set by the requirements for a PATHa.
However, if a wait is covered by the path, a matching post must
be covered. For instance, in figure 6, the nodes 2, 4, 7, 25, and
26 are required nodes, whereas all other synchronization nodes are
optional. Among the required nodes, the partial orders are uniquely
identified, whereas the partial orders among the optional nodes are
not. For example, it is acceptable to include either post3 or post4
first in a path coverage. We can even include wait 1 later than post4
in a PATHa.

The DFS approach is most useful for finding a path that connects two
nodes whose partial order is known. The DT-IT approach is most
appropriate for covering nodes whose partial order is not known in
advance. Therefore, DFS is most useful for finding a path between
the required nodes, whereas the DT-IT approach is most useful for
ensuring that the optional nodes are covered.

Our algorithm consists of two phases. During the first phase, called
the annotate phase, the depth-first search (DFS) approach is em-
ployed to cover the required nodes in the PPFG. Then, the DT-IT
approach is used to cover the optional nodes. After a path to cover
a node is found, all nodes in the path are annotated with a traversal
control number (TRN). In the second phase, called the path genera-
tion phase, the actual path coverage is generated using the traversal
control annotations. We first describe the data structures utilized in
the du-pair path finding algorithm, and then present the details of
the algorithm.

The algorithm assumes that the individual du-pairs of the paral-
lel program have been found. Previous work computing reaching
definitions for shared memory parallel programs has been done by
Gmnwald and Srinivasan [5].

6.1 Data Structures

The main data structures used in the hybrid algorithm are: (1)
a PPFG, (2) a working queue per thread to store the post nodes
that are required in the final path coverage, (3)a traversal control
number(TRN) associated with every node used to decide which
node must be included in the final path coverage and how many
iterations are required for a path through a loop, (4) a reverse post-
order number (RPO) for each node in the PPFG used in selecting
a path at loop nodes, (5) a decision queue per if-node, and (6) one
path queue per thread to store the resulting path.

6.2 The Du-path Finding Algorithm

We describe the du-path finding algorithm with respect to finding
du-pairs in which the define and use are located in different threads.
The handling o.f du-pairs with the define and use in the same thread
is a simplification of this algorithm. Figure 4 contains the anno-
tate_the_graphO algorithm, which accomplishes the annotate phase.
The traverse_the_graphO algorithm, shown in Figure 5, traverses the
PPFG and generates the final du-path coverage. We describe each
step of these algorithms in more detail here.

Phase 1: Annotating the PPFG.
Step 1. Initialize the working and decision queues to empty, and set
TRN of each node to zero.
Step 2. Use DFS to find a path from the pthread_create of the thread
containing the define node to the define node, and then from the

157

Algorithm annotate_the_graph0

Input: A DU-pair, and a PPFG

Output: Annotated PPFG

Method:
1. Initialize TRN's, decision queues, and working queues;
2. Find a path to cover pthread_create and define nodes using dfs;

From the define node, search for the use nude using dfs;
3. Complete the two sub-paths using DT-lT.
4. For each node in the complete paths:

Increment TRN by one;
If node is a WALT,

Add matching nodes into appropriate working queues,
If node is an if-node,

Add the successor node in the path into decision queue;
5./* process the synchronization nodes */

while (any working queue not empty)

{ For each thread, if working queue not empty
I

Remove one node from the working queue;
if the node's TRN is zero
{

Find a path to cover this node
For each node in the complete path:

Increment TRN by one;
If node is a WAIT,

Add matching nodes into appropriate working queues,
If node is an if-node,

Add the successor node in the path into decision queue;
I }

}

Figure 4: Phase 1: A n n o t a t e the graph,

define node to the use node. When a post node is found in the path,
a matching wait is placed as the next node to be traversed, and the
search for the use node continues. Upon returning from each DFS0
call after a wait is traversed, return to the matching post before con-
tinuing the search for the use node if not yet found.
Step 3. Apply DT-IT to complete the sub-paths found in Step 2. To
complete the sub-path in the thread containing the define node, use
the dominator tree of the define node and the post-dominator tree of
the post node that occurs after the define node in the sub-path just
found. Similarly, to complete the sub-path in the thread containing
the use node, use the dominator tree of a matching wait of the post
node and the post-dominator tree of the use node.
Step 4. For each node covered by either of these two paths,
(1) increment the node's TRN by one to indicate that the node should
be traversed at least once.
(2) If the node is a wait, add a matching post into the working queue
of the thread where the post is located.
(3) If the node is an if-node, add the Reverse Post-Order Num-
ber(RPO) of the successor node within the path into the if-node's
decision queue to ensure the correct branch selection in phase 2.
Step 5. While any working queue is not empty, remove one post
node from a thread's working queue, and find a path to cover the
node. Increment the TRN of the nodes in that path. In this way,
the TRN identifies the instances of each node to be covered. This
is particularly important in finding a path coverage for nodes in-
side loops, where it might be necessary to traverse some loop body
nodes several times to ensure that branches inside the loop are cov-
ered appropriately. Process wait and/f-nodes in this path as in Step
4.

Algorithm traverse_the_graphO

Input: An annotated PPFQ

Output: A DU-path
Method:

For all threads
{

current = begin node of the thread;
while (current node's TRN > 0 and

current is not the end node) !
add the current node to the result DU-path;
decrement TRN of current node by one;
if (current is an if-node)

current = first node from decision queue;
delete the first node in the queue;

else
if (current is a loop node)

current = successor with smallest non-zero RIO;
else

current = successor node of current;
}

}

F i gure 5: P h a s e 2: G e n e r a t e the d u - p a t h c o v e r a g e

P h a s e 2: G e n e r a t i n g a du-pa th . For each thread, perform the
following steps:
Step 1. Let n be the begin node of the thread.
Step 2. While n's TRN > 0 and n is not the end node,
Add n to the path queue, which contains the resulting path coverage,
and decrement n's TRN. I fn is an if-node, then let the new n be the
node removed from n's decision queue. Otherwise, if n is a loop
node, the successor with the smallest non-zero TRN is chosen to be
the new n. If the children have the same TRN, then the child with
the smallest RPO is chosen. Otherwise, i fn is not an if-node or loop
node, let new n be the successor ofn.

6.3 Examples

In this section, we use two examples to illustrate the hybrid ap-
proach. The first example illustrates generating a PATHw, while the
second example illustrates generating a (non-PATHw) PATHa. Both
examples cover the du-pair with the define of X at node 4 and the
use of X at node 26 in Figure 6.

E x a m p l e 1 Generating a PATHw:
During the second step of the first phase, the required nodes, includ-
ing the pthread_ereate, define, post2, wait 2, and the use nodes, are
included in a partial path. The identified partial path is 2-3-4-5-7-
25-26. During the third step of the first phase, the two sub-paths are
completed, using the DT-IT approach. The two identified complete
paths are 1-2-3-4-5-7-8-9-3-11 for manager and 21-22-23-25-26-
27-28-22-30 for workerl. The TRN for every node along the two
paths equals 1 after step 4 except the loop node 22 for which the
TRN is 2. When node 9 was reached during this traversal, nodes 28
and 35 were put into the working queues for workerl and worker2,
respectively. When node 28 is taken out of the working queue
in step 5, it is found to have a nonzero TRN, and thus no more
paths are added. When node 35 is taken out of the working queue,
the TRN is zero. Hence, the path 31-32-33-34-35-32-36 is found
to cover node 35. With the annotated PPFG as input, the second
phase finds a final path of 1-2-3-4-5-7-8-9-3-11 for manager, 21-
22-23-25-26-27-28-22-30 for workerl, and 31-32-33-34-35-32-36
for worker 2.

158

manager worker 1 worker
2

Figure 6: Example of the path finding algorithm

Example 2 Generating a non-PATHw:
During the seconcL step of the first phase, the required nodes, includ-
ing the pthread_c,eate, define, post2, wait2, and the use nodes, are
included in a part~ai path identified as 2-3-4-5-7-25-26. During the
third step of the :~rst phase, the two sub-paths are completed, and
found to be 1-2-3.4-5-7-8-9-3-11 for manager and 21-22-23-25-26-
27-29-22-30 for ;vorkerl. The TRN for every node along the two
paths equals 1 aft Jr step 4 except for the loop node 22; the TRN for
node 22 equals 2 When node 9 was reached during this traversal,
nodes 28 and 35 ,~ere put into the working queues. Similarly, during
the fifth step ofth~ first phase, two paths 21-22-23-25-26-27-28-22-
30 and 31-32-33-34-35-32-36, are found to cover nodes 28 and 35,
respectively. Th,~ final TRN's for this example label each node in
Figure 6. The sec~ m6 phase finds final paths of 1-2-3-4-5-7-8-9-3-11
for manager, 21.22-23-25-26-27-29-22-23-25-26-27-28-22-30 for
worker I and 31-~ 2-33-34-35-32-36 for worker2. This set of paths
is not w-runnable because worker I has an infinite wait (at node 25).

It should be note t that regardless of the path constructed, the user
will have to validate that the w property holds.

6.4 Correctness and Complexity

Given a du-pair !n a parallel program where the define node and
the use node ar~ located in two different threads, we show that
this algorithm in :leed will terminate and find a PATHa. We first
introduce some h rranas before we give the final proof.

Lemma 1: TRN l,reserves the number of required traversals of each
node within a lo~ 0 body.

During the first phase, the TRN of a node is incremented by one
each time a path is generated that includes that node. Therefore,

the number of traversals of each node in paths found during the first
phase is preserved by the TRN. Although the number of traversals
during the first phase is preserved, we are not claiming that these
nodes will indeed be traversed during the second phase that same
number of times. For nodes outside of a loop body, each node will
be traversed at most as many times as its TRN. But a node may not
need to be traversed that many times because the path generation
phase may reach the End node before the TRN of all nodes becomes
zero. Moreover, if there is no loop node in a program, only required
nodes will be traversed as many times as the TRN indicates.

Lemma 2: The decision queue and TRN of an if-node guarantee
that the same sequence of branches selected during the frst phase
will be selected during the second phase.

When an if-node is found in a path during the first phase, one branch
is stored into the decision queue at that time. Hence, the number
of branches in the decision queue of a given if-node is equal to the
TRN of that if-node. Each time the if-node is traversed during the
second phase, one node is taken out of the decision queue and the
TRN of the if-node is decremented by one. Therefore, the sequence
that a branch is selected is preserved.

Lemma 3: D FS used during the first phase ensures define -< post -<
wait -< use in the final generated path.

During the first phase, the required nodes will be marked by DFS
prior to any other nodes in the graph. This ensures that necessary
branches are stored in the decision queues first. By Lemma 2, these
branches will be traversed first during the second phase. Hence,
these nodes will be traversed in the correct order as given by the
relationships above. Therefore, Lemma 3 is valid.

Lemma 4" The working queues and TRN together guarantee the
termination of the Du-path Finding Algorithm.

We must show that both phases terminate.
Phase I Termination: We use mathematical induction on m, where
m represents the total number of pairs of synchronization nodes
covered in a path coverage.
Base case: m = 1. Since there is only one pair of synchronization
calls, the required ones, they will be included in the path generated
by the DFS. The completion of the two partial paths will automat-
icaily terminate since there are no extra post or wait's involved.
Now, assume Lemma 4 is true when m = k where k is an integer
greater than 1. We need to show that Lemma 4 is also true when
m = k + 1. If the post and wait have been traversed previously, the
TRN of these nodes will be greater than zero. Hence, they will
not be included again during the first phase. When we generate a
new path to cover this pair of post and wait nodes, if they currently
have TRN=0, all other pairs of synchronization nodes will have
been covered. (by the induction step) Hence, this new pair of syn-
chronization calls will not trigger an unlimited number of actions.
Therefore, the annotation phase will terminate.
Phase 2 Termination: Since the TRN for each node must be tra-
versed is a finite integer, and the TRN is decremented each time
it is traversed during phase 2, the traversai during phase 2 will not
iterate forever. Whenever a node with zero TRN or the End node is
reached, the path generation phase terminates.

Finally, we show the proof of the following theorem.

Theorem 1: Given a du-pair in a shared memory, parallel program,
the hybrid approach terminates and finds a PATHa.

Proof: (1) By Lemma 4, the hybrid approach terminates. (2) To
show that a PATHa is generated, we must show that the conditions
described in the definition of PATHa are satisfied. By Lemma 1,

159

Lemma 2, and Lemma 3, we can conclude that the define, use, the
required post, and wait nodes will be covered in the correct order.
Step 1 of Phase 1 ensures that all appropriate pthread_create calls
are covered. Step 5 ensures that a matching post node regarding
each wait node included in the path is also covered. Therefore, all
conditions for a PATHa are satisfied. Q.E.D.

The running time of the hybrid approach includes the time spent
searching for the required nodes and time spent generating the final
path coverage. We assume that the dominator/implied trees and the
du-pairs have been provided by an optimizing compiler.

Theorem 2: For a given G = (V, E), and a du-pair (d, u), the total
running time of the du-path finding algorithm is equal to 0(2 * k*
(IV[+ IE[)), where the total number of post or the wait calls is
denoted by k.

Proof: The running time for searching for the required nodes is
equal to O(IV I + IEI). To complete the two partial paths, the running
time is equal to O(2 * k * (IV] + I EI)), where the total number of post
or the wait calls is denoted by k. Finally the second phase takes
time 0(2 * k* ([VI +]El)) to finish. Hence, the total running time is
equal to O(2. k . (IV I + [E I)). For a given graph, usually the number
of edges is greater than that of the nodes. Then, the running time is
equal to O(2*k . IEI). Q.E.D.

7 Other Parallel Paradigms

7.1 Rendezvous communication

Among other researchers, Long and Clarke developed a data flow
analysis technique for concurrent programs[9]. After their data
flow analysis is performed, we can apply a modified version of our
algorithm to find aU-du-path coverage for a concurrent program
with rendezvous communication. In particular, we need to modify
the following: (1) construction of the PPFG, (2) definition of path
acceptability, and (3) the all-du-path finding algorithm.

First, to accommodate the request and accept operations in con-
current programs to achieve rendezvous communication, the PPFG
needs to include a directed edge from a request to an accept node.
Secondly, since the execution of a request is synchronous, the sec-
ond condition in the definition of PATHa must be replaced by the
following two conditions:

2a. Vaccept nodes a ~p PATH, 3 a request node r E MR(a), such
that p Ep PATH, and

2b. Vrequest nodes r Ep PATH, 3 a accept node a E MA(r), such
that a Ep PATH.

The set MR(a) is defined as the set of matching requests for the
accept node a; the set MA(r) is defined as the set of matching
accepts for the request node r.

Finally, during the first phase of the algorithm, whenever a request
o r an accept is found, the matching node must be added into the
working queue.

7.2 Message Passing Programs

For analyzing message passing programs, a data flow analysis sim-
ilar to interprocedural analysis for sequential programs is needed to
compute the define-use pairs across processes. Several researchers
have developed interprocedural reaching definitions data flow analy-
sis techniques, even in the presence of aliasing in C programs [12, 6].
Although this analysis may find define-use pairs that may not ac-

tually occur during each execution of the program, the reaching
definition information is sufficient for program testing. After this
information is computed, we can apply our algorithm to find all-du-
path coverage for a given C program with message passing library
calls. The Message Passing Interface(MPI)[4] standard is a library
of routines to achieve various types of inter-process communication,
i.e., synchronous or asynchronous send~receive operations.

To find ail-du-path coverage for message passing programs, we
need to identify the type of send or receive operations first, i.e.,
synchronous or asynchronous. If the send operation is synchronous,
the definition of a PATHa must be modified to include both the send
and the matching receive in the path coverage similar to the change
made for supporting rendezvous-communication parallel programs.
If the send is asynchronous, we only need to replace post by send
in this paper. For each synchronous receive operation, we need to
replace the wait by a receive in our algorithms and definitions.

8 The della pasta Tool

The algorithm described in this paper has been incorporated into
della pasta, the prototype tool that we are building for parallel soft-
ware testing. The objective is to demonstrate that the process of test
data generation can be partially automated, and that the same tool
can provide valuable information in response to programmer queries
regarding testing. The current major functions of this tool are: (1)
finding all du-pairs in the parallel program, (2) finding all-du-path
coverage to cover du-pairs specified by the user, (3) displaying all-
du-path coverage in the graphic or text mode as specified by the
user, and (4) adjusting a path coverage when desired by the user.

della pasta consists of two major components: the static analyzer
which accepts a file name and finds all du-pairs as well as the
all-du-path coverage for each du-pair, and the path handler which
interacts with the user to display the PPFG, a path coverage, and
accept commands for displaying individual du-pair coverages and
for modifying a path. The static analyzer uses a modified version of
the Grunwald and Srinivasan algorithm[5] to find du-pairs in parallel
programs of this model, and is implemented using the compiler
optimizer generating tool called nsharlit, which is part of the SUIF
compiler infrastructure [8]. The path handler is built on top of dflo
which is a data-flow equation visualizing tool developed at Oregon
Graduate Institute. 2

The user interface of della pasta is illustrated in figure 7. On the left
of the screen, the PPFG is illustrated; on the right, the corresponding
textual source code is shown. A user can resize the data flow graph
as desired. The currently selected def-use pair is shown at the top of
the screen. The corresponding du-pair path coverage is depicted in
the PPFG as well as in the text as highlighted nodes and statements,
respectively. Clicking on any node in the PPFG will pop up an extra
window with some information about the node, and allow the user
to modify a path coverage.

In this example, a reader/writer program is illustrated in which
the main thread creates three additional threads: two readers and
one writer. The main thread then acts as one writer itself and
communicates with one of the two readers just created. These two
pairs of readers/writers will work independently in parallel. The
du-pair coverage shown in this example only involves two of the 4
threads in the program.

We are currently extending della pasta to use the du-pair coverage

2This tool can be downloaded from the Internet. Refer to the
web site http:llwww.cse.ogi.edu:8OISparseldflo.html for details.

160

exi t { I) ;

{

void
writerlO
{
Int. err';

Figure 7: della pasta user interface

161

information already available through our static analyzer to answer
queries of the following kind: Will the test case execute success-
fully without infinite walt caused by the path coverage? What other
du-pairs does a particular path coverage cover? We are also in-
corporating our temporal testing techniques [17] into the tool in
order to provide testing aid for delayed execution in addition to the
traditional all-du-path testing.

9 Summary and Future Work

To our knowledge, this is the first effort to apply a sequential testing
criterion to shared memory or message passing parallel programs.
Our contributions include sorting out the problems of providing
all-du-path coverage for parallel programs, classifying coverages,
identifying the limitations of current path coverage techniques in
the realm of parallel programs, developing an algorithm that suc-
cessfully finds all-du-path coverage for shared memory parallel
programs, showing that it can be modified for message passing
and rendezvous communication, and demonstrating its effective-
ness through implementation of a testing tool.

The all-du-path coverage algorithm presented in this paper has some
limitations. The all-du-path algorithm requires that a PPFG be
constructed statically. If a PPFG cannot be constructed statically
to represent the execution model of a program, the analysis that
constructs the du-pairs may not produce meaningful du-pairs. Thus,
the number of w o r k e r threads is currently assumed to be known
at static analysis time. In the case where a clear operation is used
to clear an event before or after the wait is issued, our analysis will
report more du-pairs than needed. In testing, this only implies that
we indicate more test cases than really needed.

We are in the process of examining these limitations, while exper-
imentally analyzing the effectiveness of fault detection for parallel
programs using the all-du-paths criterion with della pasta, and
investigating other structural testing criteria for testing parallel pro-
grams.

Acknowledgements

We would like to thank Barbara Ryder for her helpful comments in
preparing the final paper.

"The views and conclusions contained in this document are those
of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the Army Research
Laboratory or the U.S. Government."

References
[1] A. Bertolino and M. MarrY. Automatic generation of path cov-

ers based on the control flow analysis of computer programs.
IEEE Trans. on Soft. Eng., 20(12):885-899, Dec. 1994.

[2] L.A. Clarke. A system to generate test data and symbolically
execute programs. IEEE Trans. on Soft. Eng., 2(3):215-222,
Sept. 1976.

[3] H. N. Gabow, S. N. Maheshwari, and L. J. Osterweil. On two
problems in the generation of program test paths. IEEE Trans.
on Soft. Eng., SE-2(3):227-231, Sept. 1976.

[4] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable
Parallel Programming with the Message Passing Interface.
MIT Press, 1994.

[5] D. Grunwald and H. Srinivasan. Data flow equations for ex-
plicitly parallel programs. In Fourth ACM SIGPLAN Sym-

posium on Principles and Practice of Parallel Programming,
pages 159-168, California, USA, 1993.

[6] M. J. Harrold and M. L. Soffa. Efficient computation of in-
terprocedural definition-use chains. ACM Transactions on
Programming Languages and Systems, 16(2):175-204, Mar.
1994.

[7] B. Korel. Automated software test data generation. IEEE
Trans. on Soft. Eng., 16(8):870-879, Aug. 1980.

[8] M. S. Lam. Introduction to the SUIF compiler system. In First
SUIF Compiler Workshop, Jan. 1996.

[9] D. Long and L. Clarke. Data flow analysis of concurrent
systems that use the rendezvous model of synchronization.
Technical Report COINS 91-31, University of Massachusetts,
Dept of Computer Science, July 1991.

[I0] S. Morasca and M. Pezz~. Using high-level petri nets for
testing concurrent and real-time systems. In H. Zedan, editor,
Real-Time Systems: Theory and Applications, Proceedings
of the conference organized by the British Computer Society,
pages 119-131. Elsevier Science Publishings, 1990.

[11] S. C. Ntafos and S. L. Hakimi. On path cover problems in
digraphs and applications to program testing. IEEE Trans. on
Soft. Eng., 5(5):520-529, Sept. 1979.

[12] H. D. Pande, W. Landi, and B. G. Ryder. Interprocedural
def-use associations for C systems with single level pointers.
IEEE Trans. on Soft. Eng., 20(5), 1994.

[13] K. C. Tai. Testing of concurrent software. In Proceedings of
the 13th Annual International Computer Software and Appli-
cations Conference, Sept. 1989.

[14] R.N. Taylor, D. L. Levine, and C. D. Kelly. Structural testing
of concurrent programs. IEEE Trans. on Soft. Eng., 18(3):206--
215, Mar. 1992.

[15] S. N. Weiss. A formal framework for studying concurrent
program testing. In Proceedings of the 4th Symposium on
Testing, Analysis, and Verification, pages 106-113, July 1988.

[16] E. J. Weyuker. The evaluation of program-based software
test data adequacy criteria. Communications of the ACM,
31(6):668-675, June 1988.

[17] C. Yang and L. L. Pollock. The challenges in automated
testing of multithreaded programs. In the 14th International
Conference on Testing Computer Software, pages 157-166,
June 1997.

[18] C.-S. D. Yang and L. L. Pollock. An algorithm for all-du-path
testing coverage of shared memory parallel programs. In Sixth
Asian Test Symposium, Nov. 1997.

[19] C.-S. D. Yang and L. L. Pollock. Semi-automatic temporal
testing for parallel programs. Technical Report 98-05, U. of
Delaware, Dept of CIS, Sept. 1997.

[20] R.-D. Yang and C.-G. Chung. Path analysis testing of con-
current programs. Information and Software Technology,
34(1):43-56, Jan. 1992.

162

