
Applications of Synchronization Coverage

Arkady Bron
IBM Haifa Research Lab,

Mount Carmel,
Haifa 31905, ISRAEL

bron@il.ibm.com

Eitan Farchi
IBM Haifa Research Lab,

Mount Carmel,
Haifa 31905, ISRAEL

farchi@il.ibm.com

Yonit Magid
IBM Haifa Research Lab,

Mount Carmel,
Haifa 31905, ISRAEL

yonit@il.ibm.com

Yarden Nir
IBM Haifa Research Lab,

Mount Carmel,
Haifa 31905, ISRAEL

yarden@il.ibm.com

Shmuel Ur
IBM Haifa Research Lab,

Mount Carmel,
Haifa 31905, ISRAEL

ur@il.ibm.com

ABSTRACT
Coverage analysis is a useful testing technology. However,
some coverage models are more acceptable to the industry
than others. In the field of testing multi-threaded appli-
cations, there is a need for a coverage model that can be
used to evaluate tests for concurrent completeness and to
find new testing requirements. We present a new coverage
model: synchronization coverage. This model is simple to
understand and the action items generated by each uncov-
ered task are clear to testers and developers. We propose
that synchronization coverage could, and should, become
one of the more commonly used coverage models.

Categories and Subject Descriptors
D.2.5 [SOFTWARE ENGINEERING]: Testing and De-
bugging—Testing tools (e.g., data generators, coverage test-
ing)

General Terms
Algorithms, Measurement, Reliability, Experimentation, The-
ory, Verification

Keywords
Multi-threading, coverage, testing

1. INTRODUCTION
Coverage analysis is a common technique used both to

evaluate the quality of testing done and to find areas of
the code that need additional testing. No coverage measure
dedicated to concurrent aspects of applications has become
accepted practice in the industry.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPoPP’05,June 15–17, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-080-9/05/0006 ...$5.00.

In this paper, we first discuss the requirements that a
coverage model needs to fulfill to gain acceptance in the
industry. We then present a coverage model in detail: syn-
chronization coverage. This model is dedicated to concur-
rent aspects of programs that fulfill these requirements. It
has gained acceptance in IBM and is now being presented
outside IBM. We demonstrate several projects in which it
was used in different roles and explain the advantage of each
role.

This paper is organized as follows: in the second section,
we explain basic coverage terms, as well as why coverage
is used and for what it is useful. In the third section, we
present our insights about what makes some coverage mod-
els superior, in practice, to others. In the fourth section, we
present synchronization coverage. In the fifth section, we
report on the use of synchronization coverage in the field.

2. BACKGROUND ON COVERAGE
Testing is one of the biggest problems of the software in-

dustry. The cost of testing is usually between 40 and 80%
of the development process, as compared with the coding
itself which may be less than 20%[3]. The main technique
for demonstrating that testing has been thorough is called
test coverage analysis [13]. Simply stated, the idea is to
create, in a systematic fashion, a large and comprehensive
list of tasks and check that each task is covered in the test-
ing phase. Coverage can help in monitoring the quality of
testing, in creating tests for areas that have not been tested
before, and with forming small yet comprehensive regression
suites [4]. In this section, we discuss coverage and how it is
used in the industry.

Coverage is defined as any metric of completeness with
respect to a test selection criterion [2]. Many such metrics
have been suggested in the past [2], of which statement cov-
erage is the most common. Complete statement coverage
means that every statement in the program has been exe-
cuted by some tests. Coverage is one of the more systematic
ways to check that testing has been thorough. When using
any coverage model, of which many are available [11], a met-
ric is created against which the quality and completeness of
the testing is measured.

The most commonly used coverage metrics are based on
the control flow of the program, such as statement coverage

206

JM233333
高亮

and branch coverage; however, many other metrics exist.
Some coverage metrics are based on the data flow of vari-
ables, like define-use [2], while others are not based on the
program code but on the inputs or the specifications.

Coverage is usually used to find new testing requirements
that were overlooked in the test plan. Often the test require-
ments are written during the design and do not take into ac-
count the details of the implementation. For example, the
implementation of a sorting function might use two different
algorithms, depending on the size of the array sorted, a de-
tail which is not in the specifications. In this case, statement
coverage might show that the inputs never included the case
of a short array that uses one of the algorithms, and that
a new test is needed. Working with coverage as a guide to
improve the quality of testing has been shown to be a cost
effective use of resources [16].

Another application of coverage that is commonly used
is the generation of regression suites [13]. The generation
of regression suites has two contradictory requirements: the
suite must be small enough to be economical to execute after
every design change, yet it must be comprehensive enough to
find the bugs that were introduced. Using coverage one can
find a relatively small set of tests, which is comprehensive
in the sense that it covers the required metric [4].

A number of standards, as well as internal company poli-
cies, require that the testing program achieves some level
of coverage, under some model. For example, one of the
requirements of the DOA standard [1] is 100% statement
coverage.

There are many coverage tools that support all major pro-
gramming languages. Each tool implements a number of
coverage models for a particular combination of operating
system, compiler, and programming language. Most of them
work by instrumenting the source code and adding counters
that can later be used by the tool’s user interface to show
the coverage status and progress in some detail. To apply
such a tool, one typically has to recompile the software with
the tool and execute the tests. After the tests are executed,
there is usually some interface that highlights the parts of
the program that were not covered.

3. WHAT MAKES SOME COVERAGE
MODELS SUPERIOR?

Almost all coverage tools implement the statement and
branch coverage models. Multi-condition coverage, a model
that checks that each part of a condition (e.g., in (A or B)
both A and B impacted its value) had impact, is also im-
plemented by many tools. Fewer tools implement the more
complex models such as define-use, mutation, and path cov-
erage variants [6]. An interesting question is what makes a
coverage model ”good”. Comparative work on the strength
of coverage models, both theoretical and practical [14][17],
has been published. We believe that strength is not the ma-
jor issue. We have come to the conclusion that for a coverage
model to gain acceptance, it must fulfill all of the following
requirements:

• The model should be created statically from the code
prior to the testing, and each task must be well un-
derstood by the user. While this may seem like an
obvious requirement it does not hold in [5].

• Almost all coverage tasks must be coverable and for
the few that are not, due to practical limitations of

testing, a review process should be used. While this is
true for statement coverage, it is not the case for multi-
condition coverage, define-use coverage, and mutation
coverage, and this is probably the reason why those
coverage models are not as popular. It turns out that
if only most of the coverage tasks are attainable, but
the user does not know which ones they are and spends
time trying to cover unattainable tasks, the coverage
model will be discarded. Work on automatically cal-
culating whether coverage tasks are coverable [15] was
partially motivated by making more coverage models
conform to this requirement.

• Every uncovered task should yield an action item: ei-
ther a bug in a program that needs to be fixed, or
missing tests that need to be written.

• Some action is taken upon reaching 100% coverage for
the model (e.g., the testing phase is complete).

The popularity of statement coverage follows from the fact
that all the conditions hold. It is well understood what is
meant by a statement being covered or not. A statement
is almost always coverable, and if not, it is usually easy to
see why. When a statement is not covered, an action item
is created; either the statement is dead code and should
be removed, or new tests are needed. Many consider 100%
statement coverage to be a unit test exit criterion.

While those criteria hold for statement coverage and a
few other coverage models in the sequential domain, they do
not hold for any of the previously suggested coverage mod-
els in the concurrent or multi-threaded domains[18]. Con-
sequently, no coverage model that evaluates the quality of
testing with regard to testing multi-threading/concurrent
programs is in use. In this paper, we define such a model,
Synchronization Coverage, and report on its use in the field.

Synchronization coverage is introduced in section 4 in the
context of the Java language, although the same ideas were
easily transfered to the C/Pthread context. Synchronization
coverage is a model whose goal is to check that the synchro-
nization statements in the program, such as synchronize

block, wait(), notify(), notifyAll() of an object instance
and others, have been properly tested. When a block is
guarded by a synchronization statement, it is to ensure that
only one thread at a time will be able to execute that code.
It is standard programming practice to make the synchro-
nization blocks as small as possible in order to enable con-
current execution. Therefore, in most executions, the pro-
gram will not have a thread switch while executing the area
guarded by synchronization, which means that in most cases
the synchronization was a no-op. This is not to say that the
synchronization statements are not needed but that they
rarely impact the execution. To show that a synchroniza-
tion statement had impact on the execution, a test is needed
in which a thread was stopped from progressing (or stopped
another thread from progressing) due to a synchronization
statement.

An interesting and surprising way to demonstrate that
synchronization is not tested is to remove from the program
all synchronization protection, in the form of synchronized
blocks or synchronized methods, and show that the tests
still succeed. When this is done, it clearly demonstrates
that synchronization has not been tested at all. We have
implemented synchronization coverage in ConTest [7] an in-

207

JM233333
下划线

JM233333
高亮

JM233333
高亮

JM233333
高亮

JM233333
高亮

JM233333
高亮

ternal IBM tool, which is currently being evaluated by sev-
eral external users. It is our experience that without mea-
suring synchronization coverage and causing contentions on
the resources, most projects have very low synchronization
coverage.

In a previous work [8] on the coverage of concurrent pro-
grams, an axiomatic approach was taken. Test data ade-
quacy criteria, the axioms, were suggested for concurrent
programs. These were used to evaluate two concurrent cov-
erage criteria, covering all the happen-before relations and
covering, for two events that are not comparable in the
happen-before relation, their two possible orders of execu-
tion. It was found that coverage criteria that combine se-
quential and concurrent aspects are required in order to sat-
isfy all of the test adequacy properties.

4. SYNCHRONIZATION COVERAGE
MODEL

At IBM, we developed a coverage model dedicated to con-
current aspects: the synchronization coverage model. The
synchronization coverage model tests that the synchroniza-
tion primitives used in the program did “interesting” things.
Each coverage task is related to a particular program loca-
tion; specifically, a place in the code where a synchroniza-
tion primitive is used. We have implemented synchroniza-
tion coverage for Java and for C/Pthread, with minor dif-
ferences in details. We present them below using common
terminology, while mentioning the specific relevant terms in
traditional Java, in the new concurrency libraries in Java
1.5, and in C/Pthread.

The two most important coverage tasks for this model are
blocked and blocking. These tasks are connected to entering
“mutual exclusion” code sections. These are sections that
can be executed by only one thread at a time; a thread that
wants to enter such a section must first obtain some ”lock”
object. If another thread is holding the lock, the first thread
is blocked until the lock is available. In traditional Java, the
entrance to a mutual exclusion section is implemented by the
start of a synchronized section (block or method); in Java
version 1.5, also by calling java.util.concurrent.locks.

Lock.lock(); in C/Pthread, by calling pthread mutex lock().
The following description use the traditional Java term. The
blocking and blocked tasks are reported when there is actual
contention between synchronized sections – when a thread
T1 reaches a synchronized section A, and stops because an-
other thread T2 is inside a section B synchronized on the
same lock. In this case, section A is reported as blocked,
and section B as blocking. Note that A and B are often
the same section (a synchronized section used by several
threads). In this case both tasks related to the same loca-
tion are reported at once. Blocking is also reported for a lock
operation if, while a thread T1 is holding the lock following
this operation, another thread T2 does try-lock and fails.

Reporting these tasks in runtime is achieved by instru-
menting the program and wrapping the calls to the syn-
chronization primitives. We hold data structures that track
the state of the various locks. Just before a thread attempts
to lock, we check in our data structures whether the lock is
held by another thread.

Before describing the rest of the coverage task types, we
show how the requirements specified in the introduction for
a good coverage model are fulfilled by these two types of
coverage tasks.

1. Each task must be well understood by the user:
admittedly, understanding what the blocking and blocked
tasks mean is not as trivial as understanding statement
or method coverage tasks. However, a developer of a
multi-threaded application does need to understand
how the mutual exclusion works in general, and in her
program in particular; that a thread may stop at the
entrance to a synchronized section, etc. Given such
understanding, the meaning of each task is not hard
to understand.

2. Each coverage task must be coverable: if the syn-
chronization protocol is implemented correctly, then
the vast majority of synchronized sections can some-
times block and sometimes be blocked. As in state-
ment coverage, there are exceptions: for example, if a
synchronized method is necessarily the first to be per-
formed in the program, it can only be blocking, and
never blocked. But this is rare; and where it is the
case, the developer should be aware of it.

3. Every uncovered task should yield an action
item: if a synchronization block was never seen to be
blocking, but (as is usually the case) it is possible for
it to be blocked, it means that some interleaving sce-
nario has not been tested. Most multi-threaded bugs
occur only in some interleavings, sometimes only in
rare ones; so such an untested interleaving is a cause
for concern, and the test should be strengthened. Sim-
ilarly for an uncovered blocked. Alternatively, perhaps
there can possibly not be a contention; this means that
the synchronization is redundant, and (since it costs in
runtime) should usually be removed.

4. Some action is taken upon reaching 100% cov-
erage for the model: this can be one of the criteria
for exiting the unit test when testing concurrent pro-
grams.

We now describe the other types of coverage tasks included
in the model. The first two are implemented in ConTest;
the other three are planned for future implementations.

• Try-lock is an entrance to a mutual exclusion section,
which may not block but may succeed or fail (depend-
ing on whether another thread is holding the lock).
It does not exist in traditional Java; in Java 1.5, this
is java.util.concurrent.locks.Lock.tryLock(); in
C/pthread, pthread mutex trylock(). For each try-
lock operation, we define the tasks failed and succeeded.
Normally a try-lock may sometimes succeed and some-
times fail; if one of them never happened, then either
the test is insufficient or the operation is redundant.

• For each wait on a condition variable
(java.lang.Object.wait(),
java.util.concurrent.locks.Condition.wait(),
pthread cond wait()) we define a task repeated. Con-
current protocols use wait to make a thread wait for
a certain condition to hold, this condition depending
on actions executed by other threads. When another

208

JM233333
下划线

JM233333
下划线

JM233333
高亮

JM233333
高亮

JM233333
下划线

thread makes this condition true, it calls notify()

(signal(), broadcast(), notifyAll(), signalAll())
to make the waiting thread wake up. A programmer
might assume, in the code following the wait, that the
condition holds (relying on the notify). But this is
a known bug pattern: between the notification and
the time the waiting thread resumes running, other
threads may have operated and made the condition
false again. Therefore, wait should usually be done in
a loop, testing the condition before continuing. Fur-
thermore, in some systems, wait may wake-up “spuri-
ously”, without notification (or timeout or interrupt);
this behavior is part of the spec in Java version 1.5,
for example. It is then nearly always mandatory to
test the condition in a loop. The wait repeated cov-
erage task is reported if this wait was called twice
within a single run of the synchronized block it is in
(a wait must be called inside a block synchronized on
the same lock). That is, the thread that was in a syn-
chronized block called wait (thereby relinquishing the
lock), finished the wait (thereby reacquiring the lock),
and called the wait again, before leaving the synchro-
nized block.

• Semaphore-wait

(java.util.concurrent.Semaphore.acquire() in Java
1.5, sem wait() in C) blocked and not-blocked. A call
to semaphore-wait will report the first task if it had
to stop because the semaphore was not immediately
available, and the second otherwise.

• Semaphore-try-wait (java.util.concurrent.
Semaphore.tryAcquire(), sem trywait()) succeeded
and failed - similarly to try-lock.

• Notify (java.lang.Object.notify()/notifyAll(),
java.util.concurrent.locks.Condition.signal()

/signalAll(), pthread cond signal()/broadcast())
had-target and had-no-target. A notify call will report
had-target if there was another thread in a correspond-
ing wait, and had-no-target if not. In the latter case,
the notify will have no effect. Sometimes this is a
bug, because the programmer assumed a correspond-
ing wait ; but the wait was actually called after the
notify, and there is no subsequent notification: the
program hangs (this is the ”lost notify” bug pattern).
To increase the chance of finding such bugs, each no-
tify should be tested when it doesn’t have a target wait
(for most notifies, this is possible). Naturally, most
notifies should have a target, or else they are redun-
dant; that’s what the had-target tests. These tasks are
optional and the user may decide if the tool will cre-
ate them, as for some testers they require too deep an
understanding of the multi-threading issues involved.

One can perhaps think about other types of synchroniza-
tion tasks, depending on the primitives available in the lan-
guage. However, care must be taken with the requirements
for a good coverage model. For example, one can imple-
ment an interrupted task for wait, reported when a wait call
terminates by interrupt. But this is not a good idea, since
in many applications, interruption is never used, and so this
task cannot be covered (the second requirement is violated).
Even if interrupt is used, it may have as possible targets only
a subset of the wait calls in the application.

5. PILOT REPORT
In this section, we give a few examples of how specific

projects benefited from using synchronization coverage. Sub-
section 5.1 describes how a unit test suite was developed to
quickly obtain 100% synchronization coverage. In 5.2 we
show how synchronization coverage was used to guide re-
view and in 5.3, we show how synchronization coverage was
used to evaluate risks in a function test.

5.1 Unit testing with synchronization
coverage

Various business applications require the execution of some
business logic portion of code on a periodical base. An exam-
ple of such a business application is the Video On Demand
(VOD) application. It contains content management, media
streaming and client portions. On the client side, a multi-
media processing framework performs decryption, parsing,
decoding and rendering of the media. Each of the mentioned
operations may be designed and implemented as indepen-
dent threads. Major synchronization protocols controlling
the thread execution may be gathered under the Thread
Manager abstraction.

For instance a video renderer is responsible for pulling
decoded frames from its input queue, performing color con-
version and rendering them into the clients rendering device.
If the frame rate of the incoming video stream is 20 frames
per second, the video renderer has to execute the runBusi-
nessCode() method at least every 50 milliseconds. It is the
responsibility of the Thread Manager controlling the video
renderer to start the rendering process when the decoded
media starts to arrive, to pause it and to stop it according
to VOD application user requests.

We performed unit testing with synchronization coverage
of the Thread Manager classes in a middle sized multimedia-
related project with 160 classes. We also applied the Inter-
leaving Review Technique [10] and concurrent bug pattern
based review [9] to the thread manger protocol identifying
several bugs. One type of bugs was related to the mem-
ory model and to the wrong/no-lock bug pattern [9], others
were related to not handling interrupts appropriately. The
Thread Manager served as a base class for various modules of
the project. The Thread Manager was written from scratch,
and the thread that performed the runBusinessCode() logic
was implemented as an inner class.

At the unit test level, we wrapped an abstraction of the
test manager protocol and tested it. The Thread Manager
was easily abstracted from business code. Then, we imple-
mented a tester class that created several concurrent threads
executing different scenarios of starting, pausing, and stop-
ping threads. Finally, we applied ConTest to obtain 100%
synchronization coverage. This was easily obtained after a
short period of time – less than an hour. The same experi-
ence is confirmed in other examples; when a few classes are
used to implement the synchronization protocol, as should
be the case in correct concurrent programming, 100% syn-
chronization coverage is easily obtainable at unit test using
the abstraction method just described. We did not find ad-
ditional bugs but this is expected due to the previous review
stages. The abstracted unit test ensures high quality and is
then used in regression testing.

209

JM233333
下划线

JM233333
高亮

JM233333
下划线

For example, in the following Thread Manager inner class
code segment the real call to runBuissnessCode() was sub-
stituted with a method that only printed a message ”run
business code”.

while (!needToStop) {

runBuisnessCode();

//code abstracted to a print statement

synchronized (synchronizationObject) {

if (pause == true) {

pause = false;

There are other ways in which abstraction can be ob-
tained. For example, sometimes business code if statements
can be substituted by random decisions. At other times,
a return code from some function call can be simply hard
coded, etc. Of course, this abstraction should be done with
care by someone who understands the protocol but that is
why this technique is applied in the unit test in the first
place!

5.2 Guiding review with synchronization
coverage

The project in which this was done is a middle size project
with 575 classes. The goal of this application is to iden-
tify complex events as they occur, in order to give timely
warnings. Synchronization became a big issue when the ap-
plication was enhanced to support distributed events, for
example identifying when many resources are getting close
to their limit, when each is on a different CPU. After the
new capabilities were added, class coverage was measured on
the regression suite. Tests were created to cover the classes
not initially covered in the regression. After this first stage,
synchronization coverage was measured and evaluated.

First, we looked to see how many classes had synchroniza-
tion primitives and how many there were in each. Of the
575 classes in the project 16 had synchronization primitives.
This is reasonable and shows that a common design prob-
lem, that of having too many classes with synchronization,
is not present. However, nine classes had three or fewer
primitives. First, we checked if we could reduce the number
of files with synchronization primitives. The advantage of
having fewer files with synchronization primitives is having
fewer files to review. It also improves maintainability at a
later stage.

In an initial review, we found that two of the four files with
a single synchronization statement can be ignored as they
belong to a different code base. In one, the synchronization
statement was not needed and the last is still under review.
We found a few additional files from which we can remove
the synchronization statements which will make the design
cleaner.

The synchronization coverage showed that 25% of the
synchronization statements that were reached were also ex-
ercised. We started examining individual synchronization
statements to see why they had the coverage results indi-
cated in the coverage. After the first hour of review, we had
examined a few statements with the following results:

• Two synchronized statements were in dead code so
they could not be reached

• One was suspected as unnecessary and the decision
delayed until a thorough review could be completed.

• One was found to be unnecessary

• One was in a place that was very hard to test as it was
hard to create the specific scenario needed. This one
will also be inspected further as it is not going to be
tested

• Four statements had missing tests. This requires the
design of new tests, one of the major reasons for mea-
suring coverage to begin with.

• One of the synchronization statements was missing the
application code required to enable it to be tested.

• After finding a problem with every uncovered synchro-
nization statement we looked at, we decided to look at
one of the covered ones. It had no problems.

There were a number of actionable items as a result of
this review. We found areas that needed more tests, as
there were some synchronizations that could not be acti-
vated. We found synchronization statements that needed
to be removed, code that needed to be written, and design
that needed to change. We also found a few bugs, and lo-
cations where further reviews were needed. In this review,
we learned that after some testing was done, every synchro-
nization point that was not covered was indicative of some
problem. As the measuring phase is very fast and inexpen-
sive, the benefits of reviewing the synchronization coverage
was very clear, and it will be continued in the future. The
cost effectiveness is very impressive.

While it is probably the case that it is cost effective to re-
view every synchronization coverage, regardless of coverage
information, it is also the case that uncovered synchroniza-
tion statements supply a specifically attractive target.

5.3 Evaluating the risk of multi-threaded
testing using synchronization measures

We were asked to evaluate the cost of testing customer
code (prior to engagement) with respect to synchronization
coverage. The code was not particularly big, being about
6000 classes, but it had 482 classes with synchronization,
out of which 293 had a single synchronization element in
them. The code had 1080 synchronization statements and
140 wait statements. From this we learned that reviewing
will be very expensive as 482 classes need to be reviewed.
The design does not contain encapsulation of the synchro-
nization protocols to a few classes, which is indicative of
a bad design that could have many synchronization issues.
Our recommendation is to do a redesign, reducing the num-
ber of classes containing synchronization elements, and if
this is not feasible, to put a lot of resources into testing
multi-threaded issues. These recommendations, with the ra-
tional behind them, were used by our service branch while
bidding for this specific work.

It would have been better if, as part of the evaluation, we
could run the regression and measure synchronization cov-
erage. Then, we would have been able to give more specific
reports, naming the components with the highest risk, but
this could not be done in this assessment. One of the ca-
pabilities of FoCus [12], our coverage measurement tool, is
to help in simple data mining and finding the packages or
key words (for example if the class name contains ”excep-
tion” in it) that contain many uncovered tasks, or a higher
percentage of uncovered tasks. Those are risk areas as they
have not been properly tested.

210

6. PREVIOUS FAILED ATTEMPTS
We have been trying to create a good synchronization cov-

erage for some time. It may be instructive to explain what
our previous models did, and why we think they have not
done well. Both of the models which we tried are imple-
mented in ConTest and are used from time to time. The
first model is concurrent pair of events. Each task of this
coverage model is composed of a pair of program locations
that were encountered consecutively in a run, and a third
field which is true or false. It is false if the two locations
were run by the same thread, and true otherwise - that is,
true means there was a context switch there. There are two
problems with this model, the first is that it is too hard.
There are too many tasks, covering all of them is very diffi-
cult and not very important. The second is that the analysis
of which tasks are coverable and which are not is not auto-
matic and therefore it is not possible to know when a 100
percent is reached. The concurrent pair of events model has
been used to test progress in testing, mainly to verify that
we get interleavings we didn’t get before - i.e. that we have
context switches in new places. However due to its deficien-
cies it is very rarely used.

The second, semi-successful attempt, was the shared vari-
ables coverage model. A variable is covered if an instance
of this variable has been accessed by two different threads.
Knowing which variables are covered and which are not is
very useful for the system designer in assessing the quality
of testing and has been used for this purpose. However, like
the previous model we do not know which tasks (variables)
can be covered (accessed by two threads) and which can not
which limited its popularity as a coverage model.

7. CONCLUSION
Coverage is a useful testing technology; however, some

coverage models seem to be more useful than others. We
started by analyzing the requirements of a coverage model
that make it acceptable to the industry. The set of require-
ments that we suggest is based on our significant experi-
ence with coverage and is very different from previous com-
parisons of coverage models based on their strength or bug
finding power. We believe that for a coverage model to gain
acceptance, it has to fulfill all four specified requirements.
We have been working in the field of testing multi-threaded
applications for quite some time and have felt the lack of
such a coverage model, which can be used to evaluate tests
for concurrent completeness and to find new testing require-
ments.

When we came up with the idea of synchronization cover-
age, we thought that this will succeed where previous cover-
age models for concurrency have failed, which is in getting
user acceptance. Synchronization coverage is simple to un-
derstand, every task in it is coverable, and if one is not cov-
ered, this generates an action item for the tester. We have
managed to convince developers to reach 100% synchroniza-
tion coverage as part of the unit testing methodologoy that
we teach. So indeed, once we found a good model, people
started using it.

We teach developers and testers how to develop, review,
and test concurrent applications. Synchronization coverage
plays a key role in a number of these activities. Synchroniza-
tion coverage is new and is currently known only within the
communities in which we are active. We believe that once

synchronization coverage becomes better known, it could
become one of the more commonly used coverage models.

Synchronization coverage definition depends on the spe-
cific synchronization coverage primitives used, and to some
extent, on the bug patterns common for the user. Our tools
are currently used in the Java and C/Pthread environments.
As we branch to new environments, and as language syn-
chronization primitives evolve (such as in Java 5.0) the exact
implementation of synchronization coverage will evolve. The
basic idea though, that of testing that the synchronization
primitives did “interesting” things, will remain the same.

8. REFERENCES
[1] Software test and evaluation guidelines. Department

of the Army, Pamphlet 73-7.

[2] Beizer. Software Testing Techniques. Van Nostrand
Reinhold, New York, 1990.

[3] F. P. Brooks. The Mythical Man-Month: Essays on
Software Engineering. Addison Wesley, 1995.

[4] E. Buchnik and S. Ur. Compacting regression-suites
on-the-fly. In Proceedings of the 4th Asia Pacific
Software Engineering Conference, December 1997.

[5] H. Chockler, O. Kupferman, and M.Y. Vardi.
Coverage metrics for formal verification. In 12th
Advanced Research Working Conference on Correct
Hardware Design and Verification Methods, volume
2860 of Lecture Notes in Computer Science, pages
111–125. Springer-Verlag, 2003.

[6] S. Cornett. Software test coverage analysis,.
http://www.bullseye.com/webCoverage.html.

[7] O. Edelstein, E. Farchi, Y. Nir G Ratzaby, and S Ur.
Multithreaded java program test generation. IBM
Systems Journal, 41(3):111–125, 2002.

[8] M. Factor, E. Farchi, Y. Lichtenstein, and Y. Malka.
Testing concurrent programs: a formal evaluation of
coverage criteria. In Proceedings of the Seventh Israeli
Conference on Computer Systems and Software
Engineering, pages 119 – 126, June 1996.

[9] Eitan Farchi, Yarden Nir, and Shmuel Ur. Concurrent
bug patterns and how to test them. In PADTAD II in
the 17th International Parallel and Distributed
Processing Symposium (IPDPS’03), April 2003.

[10] Amiram Hayardeny, Shachar Fienblit, and Eitan
Farchi. Concurrent and distributed desk checking. In
18th International Parallel and Distributed Processing
Symposium (IPDPS’04) - Workshop 16, April 2004.

[11] C. Kaner. Software negligence and testing coverage. In
proceedings of STAR 96: the Fifth International
Conference, Software Testing, Analysis and Review,
pages 299–327, June 1996.

[12] Oded Lachish, Eitan Marcus, Shmuel Ur, and Avi Ziv.
Hole analysis for functional coverage data. In
Proceedings of the 39th conference on Design
automation, pages 807–812. ACM Press, 2002.

[13] B. Marick. The Craft of Software Testing, Subsystem
testing Including Object-Based and Object-Oriented
Testing. Prentice-Hall, 1985.

[14] A. Mathur and W. Wong. Comparing the fault
detection effectiveness of mutation and data flow
testing: An empirical study, 1993.

211

[15] G. Ratzaby, S. Ur, and Y. Wolfsthal. Coverability
analysis using symbolic model checking. Submitted to
Charme 2001.

[16] R. Stewart. Unit test coverage as leading indicator of
rework. In proceedings of EuroSTAR 97, NOvember
1997.

[17] E. J. Weyuker. The evaluation of program-based
software test data adequacy criteria. Commun. ACM,
31(6):668–675, 1988.

[18] Cheer-Sun D. Yang, Amie L. Souter, and Lori L.
Pollock. All-du-path coverage for parallel programs. In
Proceedings of the 1998 ACM SIGSOFT international
symposium on Software testing and analysis, pages
153–162. ACM Press, 1998.

212

