
Efficient On-the-Fly Data Race Detection in
Multithreaded C++ Programs

[Extended Abstract]
∗

Eli Pozniansky
Computer Science Department

Technion—Israel Institute of Technology

kollega@cs.technion.ac.il

Assaf Schuster
Computer Science Department

Technion—Israel Institute of Technology

assaf@cs.technion.ac.il

ABSTRACT
Data race detection is highly essential for debugging mul-
tithreaded programs and assuring their correctness. Nev-
ertheless, there is no single universal technique capable of
handling the task efficiently, since the data race detection
problem is computationally hard in the general case. Thus,
to approximate the possible races in a program, all cur-
rently available tools take different “short-cuts”, such as us-
ing strong assumptions on the program structure or applying
various heuristics. When applied to some general case pro-
gram, however, they usually result in excessive false alarms
or in a large number of undetected races.
Another major drawback of many currently available tools

is that they are restricted, for performance reasons, to de-
tection units of fixed size. Thus, they all suffer from the
same problem—choosing a small unit might result in miss-
ing some of the data races, while choosing a large one might
lead to false detection.
In this paper we present a novel testing tool, called Multi-

Race, which combines improved versions of Djit and Lockset—
two very powerful on-the-fly algorithms for dynamic detec-
tion of apparent data races. Both extended algorithms de-
tect races in multithreaded programs that may execute on
weak consistency systems, and may use two-way as well as
global synchronization primitives.
By employing novel technologies, MultiRace adjusts its

detection to the native granularity of objects and variables
in the program under examination. In order to monitor all
accesses to each of the shared locations, MultiRace instru-
ments the C++ source code of the program. It lets the user
fine-tune the detection process, but otherwise is completely
automatic and transparent.
This paper describes the algorithms employed in Multi-

Race, discusses some of its implementation issues, and pro-

∗The full version of the paper can be found at
www.cs.technion.ac.il/∼assaf/publications/MultiRace.pdf

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPoPP’03 June 11–13, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-588-2/03/0006 ...$5.00.

poses several optimizations to it. The paper shows that the
overheads imposed by MultiRace are often much smaller (or-
ders of magnitude) than those obtained by other existing
dynamic techniques.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management—Con-
currency, multiprocessing/ multiprogramming/ multitasking,
synchronization, threads; D.3.4 [Programming Languages]:
Processors—Memory management, Preprocessors, Run-time
environments

General Terms
Algorithms, Performance

Keywords
Data race, Concurrency, Multithreading, Instrumentation,
Synchronization

1. INTRODUCTION
Multithreading is a common programming paradigm that

is well-suited for multiprocessor environments. The obvious
advantages of multithreading over single threaded program-
ming are parallelism and improved performance. However,
multithreading also introduces the problem of data races.
A data race occurs when two or more threads concurrently

access a shared location without synchronization, and at
least one of the accesses is for writing. Such a situation is
usually considered to be an error (a.k.a. a bug). In most
cases it is undesirable, as it might lead to unpredictable
results and incorrect program execution. Data races usually
stem from errors made by programmers who fail to place
synchronization correctly in the program.
Unfortunately, the problem of deciding whether a given

program contains potential data races is computationally
hard. Researchers define feasible data races as races that
are based on the possible behavior of the program (i.e., the
semantics of the program computation) [15]. These are the
real races that might happen in any specific execution of a
program. According to [13], the problem of exactly locating
feasible data races is NP-hard in the general case.
Since data races are usually a result of improper synchro-

nization that does not prevent concurrency of accesses, re-
searchers also define apparent data races [15]. These are

179

福昕
高亮

福昕
高亮

福昕
高亮

approximations of feasible data races, based on the behav-
ior of the explicit synchronization only; they are defined in
the context of a specific program execution. Apparent data
races are simpler to locate than feasible data races, but they
are also less accurate than the latter. It was proved that ap-
parent races exist if and only if at least one feasible race
exists somewhere in the execution. Yet according to the
same paper, the problem of exhaustively locating all appar-
ent data races is still NP-hard.
Methods for detecting apparent data races use one of two

main approaches—either static or dynamic detection. Some-
times a combination of these approaches is used for addi-
tional efficiency and accuracy. The static methods [3, 7] per-
form a compile-time analysis of the program’s source code.
Their advantage is that they check the program globally—
they are able to warn about any data race that might occur
in an execution of the program. In addition, since they op-
erate directly on the code, they can perform the data race
detection in granularity of objects as declared by the struc-
tures and classes of the program. Their main drawback is
that they are too conservative in the general case—they can
neither know nor understand the real semantics of the pro-
gram. Hence, for every modern full-scale programming lan-
guage, static detection methods always result in excessive
false alarms, which confuse the programmer and mask the
real data races.
The dynamic methods, which are further divided into

postmortem and on-the-fly techniques, use some tracing mech-
anism to detect whether a particular execution of the pro-
gram actually exhibited data races. The postmortem tech-
niques [2, 14] collect some information about the order of
synchronization and computation events during the execu-
tion, and create a trace of the run. When the execution
terminates, they analyze this trace and warn about possi-
ble data races. In contrast, on-the-fly methods [5, 10, 16,
17] buffer partial trace information in memory, analyze it,
and detect data races as they occur. Thus, some of these
methods are also capable of pinpointing the exact locations
of the instructions involved in a detected race.
The advantage of the dynamic methods over the static is

that they detect only those apparent data races that actu-
ally occurred during real executions. Their main drawback,
however, is that they check the program locally by consid-
ering only one specific execution path of the program each
time. If the program takes another path when, for exam-
ple, another input is supplied, other data races might pop
up. Hence, in order to detect all data races, all possible
execution paths should be checked. This, however, is not
practical in most cases. Thus, the dynamic check should
not be restricted to program testing time, but should also
be activated each time the program executes, or in case a
problem is suspected.
The above discussion brings up the issue of overhead. Dy-

namic techniques that are known in the literature, especially
those that work on-the-fly, impose high slowdowns on the
program under examination. Typically, this overhead is in
the order of hundreds to thousands of percentage points,
thus precluding the activation of the detection in produc-
tion mode. Commonly, there exists a tradeoff between the
runtime overhead and the accuracy of the detection, namely,
lower overhead will result in missing more real data races,
or in reporting more false alarms.
Finally, the issue of detection granularity (i.e., the size of

the memory block/unit on which the detection is actually
performed) is also of utmost importance: a small unit re-
sults in missed data races and higher overheads, whereas a
large one causes false detection. In modern object-oriented
programming languages, objects are the natural choice for
becoming the units on which the detection should be ap-
plied: they usually contain data that is strongly related, and
should be protected as a whole. For this reason the locking
granularity in modern languages, such as Java (as realized
in the monitor APIs), is applied in granularity of objects1.
We remark that the average object size is known to be very
small (about 20 bytes for Java objects), hence the average
detection accuracy on objects is relatively good. Unfortu-
nately, many currently known dynamic methods are limited
to detection granularity of fixed size (e.g., fixed number of
bytes, like double-word), and thus cannot perform the detec-
tion in object-size granularity. There are two main reasons
for this limitation: performance considerations and inability
to correctly detect object boundaries.
In this paper we present a novel testing tool called Multi-

Race, which combines two very powerful techniques for on-
the-fly detection of apparent data races. The first technique
is a revised version of the Djit algorithm [10], called Djit+.
The algorithm is based on Lamport’s happened-before partial
order relation [11], and it is capable of efficiently detecting
apparent races as they occur. The second technique is an
improved variant of the Lockset algorithm [17], which warns
about the shared locations for which the locking discipline,
a policy common among programmers, is violated during
the program’s run. Both Djit+ and improved Lockset de-
tect data races in programs that execute on weakly ordered
systems, and use global and two-way synchronization prim-
itives: barriers and locks. In fact, they can be easily ex-
tended for use with programming models that require other
common synchronization primitives.
The benefit of combining these algorithms in one tool is

that they complement each other in a way that the one com-
pensates for the shortcomings of the other. For example,
Lockset usually reports the same set of locking discipline
violations under different thread scheduling. Yet such viola-
tions can be just false alarms that do not necessarily lead to
occurrences of feasible data races. On the other hand, the
Djit+ algorithm detects only those data races that actually
occurred during the execution. Yet it is very sensitive to
differences in thread interleavings. Thus, it can miss some
or even all of the data races due to some especially unfortu-
nate execution. Combining both algorithms in one tool and
applying them to the same program execution at the same
time makes the detection of data races much more powerful.
MultiRace makes use of several novel technologies. By ex-

ploiting a unique configuration of memory mappings, called
views, and the technique of pointer swizzling [4, 9], Multi-
Race detects data races in granularity of variables and ob-
jects in the program, rather than in fixed-size units. To
the best of our knowledge, it is the first entirely transparent
on-the-fly framework for multithreaded environments that is
capable of doing so. MultiRace carries out this task with the
help of automatic and transparent source code instrumenta-
tion. In this approach, the code of the tested program, writ-
ten in C++, is pre-processed, modified, and recompiled, such
that calls to logging and detection mechanisms are injected

1Although locking in the lower granularity of code blocks is
also allowed in Java, it is rarely used in practice.

180

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
下划线

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

in places where accesses to shared locations are performed.
Finally, by logging only a portion of all the accesses to

shared locations, MultiRace imposes an overhead that is
smaller by orders of magnitude than those imposed by other
currently available tools. This fact makes it an even more
attractive tool for on-the-fly data race detection in multi-
threaded environments. The slowdowns measured for six
common benchmark applications are low enough to make
its use practical, whereas the average slowdowns reported in
previous on-the-fly works, like [5, 16, 17], are much higher
for similar kinds of applications.
Because of its transparency, relatively low overhead, pow-

erful detection algorithms, and ability to match the detec-
tion granularity to that of the objects used in the program,
MultiRace is unparalleled by any of the known dynamic de-
tection techniques for multithreaded environments.
The rest of this paper is organized as follows. Section 2

describes the assumptions of our memory and synchroniza-
tion models, gives the definition of a data race, presents the
detection algorithms used in our system, and discusses the
benefits of combining them in the same framework. Sec-
tion 3 gives the main ideas behind the logging mechanism
implemented in MultiRace: it describes the memory organi-
zation and the management of views. Section 4 explains our
notion of the variable-size detection granularity. Section 5
gives highlights of the transparent instrumentation process,
which enables the access logging. Section 6 describes how
MultiRace reports data races in the tested program. Sec-
tion 7 suggests several optimizations of MultiRace, and Sec-
tion 8 presents the obtained overheads. Section 9 surveys
related works. We give our conclusions in Section 10.

2. DETECTION ALGORITHMS

2.1 Memory and Synchronization Models
The technique proposed in this paper assumes a model of

some multithreaded environment, in which, in addition to
local accesses, the threads read from and write to shared
locations of the process within which they reside. Shared
locations are assumed to be global and static objects, as
well as all allocations from the heap.
In order to prevent concurrent accesses and avoid data

races, the threads use synchronization primitives on shared
synchronization objects. We follow the basic observation
that a synchronization object S can be released by one set
of threads that reach a certain point in their execution and
can then be acquired by another set of threads. For exam-
ple, an unlock(S) operation releases S and a corresponding
lock(S) operation acquires it; a global barrier(S) opera-
tion causes all threads to release S as they reach the barrier,
and only then causes them to re-acquire S. To simplify our
discussion, we deal with set of programs that employ only
locks and barriers. Other more complicated synchroniza-
tion primitives, such as semaphores, monitors, etc., can be
viewed in similar terms.
The most common and easy to understand model for shared

memory is sequential consistency. This model implies the
existence of an agreed-among-all-threads global order R on
all shared memory accesses in the program execution. Un-
der this order, the reads of every shared location v always
return the most recently written value to v. The problem
with sequential consistency is that it is very restrictive and,
hence, it limits the employment of many optimizations that

would be possible otherwise. Thus, modern memory models
weaken the restrictions of the memory behavior.
In our work we assume some weakly ordered system that

follows the data-race-free-1 shared memory model definition,
first presented in [1]. This model only requires that the
program should appear sequentially consistent in the total
absence of data races. This also means that in the presence
of data races there is not necessarily an inter-thread global
order of variable modifications.

2.2 Definition of a Data Race
We base our definition of data races on the happened-

before relation first suggested by Lamport for message pass-
ing systems [11]. This definition also resembles those pre-
sented in [2, 10]; it allows recognition of apparent data races
that pop up in some specific program execution.

Definition 1. The happens-before partial order, denoted
hb→, is defined for all computational events (reads, writes)
and synchronization events (releases, acquires) that happen

in a specific execution. We say that α
hb→ β if: (1) α and

β are any two events performed by the same thread, with α
preceding β in the program order, or (2) α is a release and
β is its corresponding acquire, both operating on the same

synchronization object S, or (3) α
hb→ γ and γ

hb→ β.

Definition 2. We say that two events α and β are syn-

chronized if either α
hb→ β or β

hb→ α. We say that α and β
are concurrent if they are not synchronized.

Definition 3. We say that there exists an apparent data
race between two accesses to the same shared location, α and
β, if α and β are executed by distinct threads, they are not
synchronized (i.e., they are concurrent), and at least one of
them is for writing.

2.3 Djit+

In order to detect data races, we use an algorithm called
Djit+, which is a revised version of the earlier Djit algorithm
[10]. The main disadvantages of the original Djit were the
assumption of an underlying sequentially consistent system
and the ability to detect only the very first data race in
an execution. In contrast, Djit+ can correctly operate on
weakly ordered systems and still detect a greater number of
races as they occur in the program’s execution.
Djit+ relies on a formal framework called vector time frames,

which is based on Mattern’s virtual time vector time-stamps
[12]. The algorithm also assumes the existence of some log-
ging mechanism (to be described later), capable of dynam-
ically recording all accesses to each of the shared memory
locations. The general idea of the algorithm is to log ev-
ery shared access and to check whether it “happens-before”
prior accesses to same location.

2.3.1 Realizing the hb→ Relation
The execution of each thread is logically split into a se-

quence of time frames. A new time frame starts each time
the thread performs a release operation. The time frames
are numbered in a monotonically increasing order.
We assume that the maximum number of threads is known

and stored in a constant called maxThreads. Each thread
t maintains a vector of time frames, denoted stt[.], having
maxThreads entries. For the sake of simplicity we assume

181

福昕
下划线

福昕
下划线

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
下划线

福昕
高亮

福昕
高亮

福昕
高亮

that the IDs of the threads are positive integers in the range
of [0,maxThreads-1]. For each index u, the entry stt[u] stores
the latest local time frame of thread u, whose release oper-
ation is “known” to thread t. During the execution, the
vectors of the threads are maintained in the following way:
(1) if t performs a release of some synchronization object S,
it increments the value of stt[t], and by this enters a new
time frame; (2) if u acquires a synchronization object S pre-
viously released by t, then each entry in u’s vector is updated
to hold the maximum between its old value and the corre-
sponding value in t’s vector at the moment of the release.
(Clearly, in order to correctly update the entries of u’s vec-
tor, it is necessary to store the vector of t after the release
in t and before the corresponding acquire in u. This is done
by assigning a similar vector of time frames, denoted stS [.],
to each synchronization object S. The actual way in which
the updates of thread vectors are performed, is described in
Subsection 2.3.3.)

In the full paper we prove that the
hb→ relation can be

verified from the vectors of the time frames defined above.
Thus, to detect data races on-the-fly it is sufficient to check
the time frame vector of each newly logged access with the
time frame vectors of all previously logged accesses. Indeed,
this is the main idea used in our Djit+ algorithm.

2.3.2 Reducing the Number of Checks
An algorithm that logs and checks all the accesses with

all the previously logged accesses, even if correct, obviously
imposes high overhead on the system. A couple of simple
observations allow us to restrict the logging and checking to
only a portion of the set of all accesses, thus reducing the
total overhead while still maintaining correctness.
The fist observation is that in order to determine whether

some shared location participated in any data races during
an execution, it is sufficient to log only the first read and
the first write accesses to this location in each time frame.
Similarly, it is sufficient to check for races only between those
accesses to the same shared location, which are the first in
their respective time frames.
The second observation is that if there is no data race

between two accesses, α and β, then there can be no data
races between α and accesses that appear prior to β in the
program order. Developing this observation we find that it
is sufficient to check the current write access to a shared
location v against the last time frame in each of the other
threads which recently read from v and the last time frame
in each of the other threads which recently wrote to v. For
the current read access, it is sufficient to check it against the
last time frame in each of the other threads that wrote to v.
The above distinction between reads and writes arises

from the fact that a read access constitutes only races with
writes, while a write access constitutes races with reads as
well as with writes. Therefore, the set of accesses with which
a read access should be checked for a race is a subset of the
set of accesses with which a write access should be checked.

2.3.3 The Detection Protocol
In order to actually implement the detection protocol de-

scribed in previous subsections, each thread t and each syn-
chronization object S hold a vector of time frames, as de-
scribed beforehand. In addition, every shared location v
holds, for each thread t, two parameters—the last time frame
of t in which it wrote to v, and the last time frame in which

Upon initialization :

1. Each initializing thread t fills its vector of time
frames with ones—∀i : stt[i]← 1.

2. The access history of each shared location v is filled
with zeros (since no thread has accessed it yet)—
∀i : arv [i]← 0, awv[i]← 0.

3. The vector of each synchronization object S is filled
with zeros—∀i : stS [i]← 0.

Upon a release of synchronization object S :

1. The issuing thread t starts a new time frame. There-
fore, it increments the entry corresponding to t in
t’s vector—stt[t]← stt[t] + 1.

2. Each entry in S’s vector is updated to hold the
maximum between the current value and that of t’s
vector—∀i : stS [i]← max(stt[i], stS [i]).

Upon an acquire of synchronization object S :

1. The issuing thread t updates each entry in its vector
to hold the maximum between its current value and
that of S’s vector—∀i : stt[i]← max(stt[i], stS [i]).

Upon a first access to a shared location v in a time
frame or a first write to v in a time frame :

1. The issuing thread t updates the relevant entry
in the history of v. If the access is a read, it
performs arv [t]← stt[t]. Otherwise, it performs
awv[t]← stt[t].

2. If the access is a read, thread t checks whether
there exists another thread u which also wrote to v,
such that awv [u] ≥ stt[u]. In other words, t checks
whether it knows only about a release that preceded
the write in u, and if so reports a data race.

If the access is a write, thread t checks whether there
exists another thread u, such that awv[u] ≥ stt[u] or
arv [u] ≥ stt[u].

Figure 1: The full Djit+ protocol

it read from v. This information is called the access history
of v and is denoted awv [t] and arv [t] respectively. Thread
t first updates its entry, and only then reads the entries re-
lated to other threads. Accesses to the access history, awv[t]
and arv [t], are atomic, meaning that the threads always read
a consistent state of the values that were previously written.
Figure 1 shows the full Djit+ protocol.
Note that absence of announced races only ensures that

the given execution is data race free. It still does not imply
that the entire program is free of races. If, on the other
hand, races are found, the programmer can be notified and
supplied with the exact locations of the racing instructions
in the code.

2.4 Lockset
To perform even more efficient detection of data races

we also use a refined and optimized version of the Lockset
algorithm, first presented in [17]. Our implementation takes

182

福昕
下划线

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
下划线

福昕
高亮

福昕
高亮

福昕
下划线

福昕
下划线

福昕
下划线

福昕
高亮

Upon initialization:

1. For each v, C(v) is initialized to the set of all possible
locks.

Upon an access to v by thread t:

1. lh ← locks held(t).

2. If the access is a read, then lh ← lh∪{readers lock}.
3. C(v)← C(v) ∩ lh.

4. If C(v) = ∅, then a race warning is issued.

Figure 2: The Lockset Algorithm

advantage of the time frames idea, which, as was the case for
Djit+, makes it possible to decrease the required number of
checks. In addition, we extend the basic Lockset algorithm
to use barriers, so that it can be integrated with Djit+ within
the same framework.

2.4.1 The Basic Algorithm
The basic Lockset algorithm detects violations of a lock-

ing discipline. A simple, yet common locking discipline is to
require that each shared location be protected by the same
lock on each access to it. Clearly, such a policy ensures the
total absence of data races in a program. Yet a violation of
the discipline is not always a bug and does not necessarily
lead to a data race. Therefore, the main drawback of the
algorithm is that it might result in an excessive number of
false alarms, which hide the real data races. Nonetheless,
this technique was actually implemented in a full scale test-
ing tool called Eraser [17], and it was shown to provide very
important and powerful results.
For the sake of clarity, we next describe in general terms

the idea behind the algorithm. For each shared location v,
its candidate set, denoted C(v), is defined to be the set of all
locks that have consistently protected v on each access to it
in the execution so far. For each thread t, locks held(t) holds
at any given moment the set of all locks acquired by t. The
algorithm itself, also called lockset refinement, is depicted in
Figure 2.
Note that there is a distinction between reads and writes

in the depicted algorithm that does not exist in original
Lockset. On each read access we simulate the acquisition of
an additional “fake lock”, denoted readers lock. In this way,
multiple reads in different threads that are not protected
by any locks will not produce false alarms. (In the original
Lockset algorithm, another more complicated technique that
achieves the same result was used.) Clearly this does not
prevent the reads from executing concurrently. However,
the first write to v permanently removes readers lock from
C(v). Thus, in order that C(v) does not become empty,
another “real lock” is required to consistently protect v.

2.4.2 Reducing the Number of Checks
One of the disadvantages faced by the inventors of Lockset

was the overhead incurred due to the monitoring of all ac-
cesses to each of the shared locations. When we compared
the Djit+ algorithm with the lockset refinement described
above, we noticed that it is possible to significantly reduce
the overhead of Lockset by recording only the first accesses

Initializing

Virgin Shared

Empty

Clean

Exclusive

write by
first thread

read/write by
same thread

read/write by
new thread

barrier

barrier

barrier

barrier

barrier

read/write by
any thread read/write by

some thread

read/write by
any thread,
C(v) not empty

read/write by
any thread,
C(v) is empty

read/write by
new thread,
C(v) is empty

read by
any thread

read/write by
new thread,
C(v) not empty

barrier

read/write by
same thread

Figure 3: The state transition diagram used in our
extended Lockset

in each of the time frames, in the same way as was done in
Djit+. The reason for this is quite obvious. Consider two
accesses, α and β, to some shared location v, such that they
are both in the same thread, α precedes β in the program
order, and they occur during the same time frame. In such
a case, there are no unlock or barrier operations between α
and β, yet there can appear any number of lock operations.
Thus the set of locks held during access α to v is a subset of
the set of locks held during access β to v. Therefore, Lock-
set does not obtain any additional information by checking
accesses that are not first in their respective time frames.

2.4.3 Supporting Barriers
The original Lockset, as well as the refined version dis-

cussed so far, do not take advantage of the barrier synchro-
nization primitive. In order to correctly support barriers, we
observe that the definition of a barrier does not allow a pair
of racing accesses, such that one access happens before the
barrier and the other one after it. This suggests that after
reaching a barrier, the candidate sets of all shared locations
must be re-initialized by setting them to hold all possible
locks. Then the detection should be restarted.
For this purpose, we use a technique similar to the one

used in the original Lockset. For each shared location we
employ an extended state transition diagram. This diagram
is depicted in Figure 3. It controls the refinement and the
maintenance of the candidate sets, as well as the announce-
ment of race warnings.
The main differences between our diagram and the one

used in the original Lockset, are the Clean and Exclusive
states. In addition, we assume that a shared variable is ini-
tialized not only when it is first accessed by a second thread
(as in the original Lockset), but also when the thread that
first wrote to it reaches a barrier. Thus, if all threads reach
a barrier, every shared location that has already been ini-
tialized, changes its state to Clean. When the Clean state
is entered, C(v) is modified to hold the set of all possible
locks, as in the initialization phase of the algorithm (Fig-
ure 2). When location v is first accessed after the barrier, it
reaches the Exclusive state. At this point, v is assumed to
be already initialized, and hence C(v) is refined each time v
is accessed by the same thread. The race warning is issued
only if v is accessed by an additional thread and C(v) is

183

福昕
高亮

福昕
下划线

福昕
高亮

福昕
下划线

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
下划线

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

empty (either prior to the access or due to the refinement
caused by it).
Note that our support for barriers is added almost trans-

parently to the original algorithm. It is easy to see that
it does not produce any new false alarms and it does not
miss any possible races other than those described in [17].
Clearly, our refined version can be used to check programs
that employ barriers only. In contrast, the original version
of Lockset will produce an overwhelming number of false
alarms in this case, even if these programs are correct and
data race free.

2.5 Benefits of Combining Lockset and Djit+
Most of the overhead in implementing Lockset and Djit+

is in the logging mechanism, shared by both algorithms.
Thus, it is tempting to combine them into the same tool, en-
abling more powerful detection of data races. The resulting
benefits of applying both algorithms to the same execution
at the same time are as follows:

• Lockset alone cannot distinguish between real races
and false alarms. In contrast, Djit+ detects only those
apparent races that actually occurred. The combina-
tion of the algorithms supplies the programmer with
additional vital information as to which shared loca-
tions are actually raced and which are not.

• In contrast to Djit+, the Lockset algorithm was found
to be quite insensitive to differences in thread inter-
leavings, and it was shown to provide a certain kind of
global information about the raced shared locations in
a program.

• Since every data race is also a violation of the locking
discipline, for many types of programs it can be said
that Lockset and Djit+ detect respectively a superset
and a subset of all the raced shared locations in the ex-
ecution. Therefore, it can be concluded that if Lockset
did not produce any warnings in some execution, then
there is a high probability that Djit+ will not locate
any additional races in further executions. Figure 4
demonstrates this observation.

• The number of checks performed by Djit+ can be re-
duced using the additional information obtained from
Lockset. If the current access to some shared location
v does not empty the candidate set C(v) (i.e., v is still
consistently protected), then we can be sure that this
access does not form a data race with earlier accesses
to v. Thus, Djit+ should not perform any checks of
the access history of v if C(v) is not already empty.

3. IMPLEMENTATION OF THE LOGGING
MECHANISM

In the following sections we describe MultiRace—the ac-
tual framework for implementing the logging mechanism and
the data race detection algorithms. In this section we give
a description of the memory organization and management
that enable the access logging mechanism. This description
is quite general. It does not assume any specific program-
ming language, but only requires some common character-
istics of the underlying operating system.

S

F

A

L

D

Figure 4: The set of all shared locations in some
given program P is represented by region S. The
set of shared locations in P that are participating in
feasible data races is represented by region F . The
set of shared locations in P that are participating
in apparent data races is represented by region A,
which is a superset of F . The set of shared locations
for which Lockset detects violations of the locking
discipline in some specific execution EP of P is rep-
resented by region L. The set of shared locations
that Djit+ reports as participating in data races in
EP is represented by region D, which is always a
subset of both A and L. We remark that for many
types of programs (e.g., such that are not completely
nondeterministic [6]), A becomes a subset of L.

3.1 View Swizzling Approach
As was discussed earlier, our logging mechanism needs to

record only the first accesses (reads and writes) to shared
locations in each of the time frames. Techniques suitable
for this task were introduced in [9] and [4], which presented
the concept of views. According to this concept, a physi-
cal memory page can be viewed from several virtual pages,
called views, each having its own protection. Each object
that resides on the corresponding physical page can be ac-
cessed through each of the different views. This attribute
helps to distinguish between read and write accesses to the
shared objects. In addition, this enables the realization of
the variable-size detection unit, and thus avoids the fixed-
size granularity problem usually faced by other data race
detection tools. The concept of views and the memory lay-
out imposed by it are depicted in Figure 5.
We refer to the shared locations that are accessed using

the views approach as minipages. Each minipage is associ-
ated with the information essential for the data race detec-
tion algorithms. In addition, each minipage can be refer-
enced through one of the three views: NoAccess, ReadOnly
or ReadWrite. Accessing a minipage through the wrong
view (e.g., writing through a ReadOnly view) generates a
page fault, which can be caught by the operating system.
Clearly, the NoAccess view will catch each access to it, the
ReadOnly view will catch only writes, and the ReadWrite

view will not generate any page faults.
Modern operating systems allow a user handler function

to be provided for different kinds of software and hardware
exceptions. In the case of a page fault, the handler is sup-
plied with the faulted memory address, the faulting instruc-
tion, the type of page fault (read or write), and the states
of the machine registers. Once this information has been

184

福昕
高亮

福昕
高亮

福昕
下划线

福昕
高亮

福昕
下划线

福昕
下划线

福昕
下划线

福昕
高亮

福昕
下划线

福昕
下划线

福昕
高亮

福昕
高亮

福昕
高亮

Read-Only
View

No-Access
View

Physical Shared
Memory

Thread 1

Thread 2

Thread 4

Thread 3

Read-Write
View

Virtual
Memory

X

Y

X

Y

X

Y

X

Y

Figure 5: The memory layout and the depiction
of views. Note that different threads can access X
through different views, thus getting different pro-
tections for it.

obtained, appropriate action can be taken: the faulted mini-
page can be located, its view tested and modified, and the
race detection mechanisms invoked.
Recall that implementing the detection algorithms requires

logging only the first accesses to shared locations in each
time frame. The idea for the logging mechanism is therefore
straightforward. We use a technique called pointer swiz-
zling, also employed in [4]. When some thread is initialized,
or after it performs a release operation indicating the begin-
ning of a new time frame, it points to all minipages through
the NoAccess view. This process of swizzling the views to
NoAccess is called invalidation. If the first access to some
minipage in the current time frame is a read, a page fault
occurs and the thread modifies its view on this minipage to
ReadOnly. In this way, subsequent reads do not generate
any faults, but a later write in the same time frame pro-
duces a write fault. If this happens, the view is changed to
ReadWrite. If, on the other hand, the first access in a time
frame is a write, the view is moved directly to ReadWrite,
so later accesses do not produce any faults. It is easy to see
that such a protocol correctly distinguishes between those
accesses that are important for the detection mechanisms
and those that are not.

3.2 Memory Layout and Memory Allocations
In order to achieve the memory layout depicted in Fig-

ure 5, the system, when activated, enters an initialization
phase. This phase precedes the initialization of global vari-
ables and the execution of any line of code in the tested
program. In this start-up phase, a physical memory ob-
ject, large enough to satisfy all future program’s memory
requests, is allocated. This object is the shared memory area
recognized by our system for the purpose of access logging
and data race detection. Then, the NoAccess, ReadOnly and
ReadWrite views are mapped on that memory object in the
virtual memory.
In order to intercept the memory allocation requests, all

allocation routines and operators are overridden. In this

way, the program’s allocation requests are always satisfied
from the shared memory object. Each memory allocation re-
quest creates a minipage. The minipage’s starting address is
always returned to the programmer through the ReadWrite

view, so that constructors, for example, are invoked without
being faulted.

3.3 Swizzling Pointers
Suppose that our program contains a pointer that holds an

address of some shared object through the NoAccess view.
As long as this program pointer is only manipulated (i.e.,
assigned to other pointers or incremented by some offset,
etc.), no race detection or swizzling should be performed.
The moment the pointer is dereferenced and the pointed
object is actually accessed, a page fault occurs, and the race
detection mechanisms are activated. The view on the object
is then swizzled to the ReadOnly or the ReadWrite view.
The problem with this scenario is that the program pointer

itself is not changed. In fact, there is no simple way of chang-
ing the pointer without at least knowing its address, which
is not supplied to the page fault handler. Moreover, if there
are some additional pointers to the same shared object or to
offsets inside it, they all have to be swizzled as well. In the
RTL system, presented in [4], the suggested technique is to
force each pointer that refers to a shared memory area to be
recognized by that area. In this way, all pointers referenc-
ing the area can be swizzled at once. This method, besides
being very restrictive and slow (there can be any number of
pointers referencing the same area), assumes user assistance
in identifying these pointers.
In contrast, our technique is much more sophisticated,

since it is completely transparent to the programmer. To
implement pointer swizzling correctly, every thread keeps
an internal pointer to each of the minipages through the
desired view. On each page fault, instead of swizzling the
program pointer itself, we swizzle the internal pointer of
the issuing thread that corresponds to the faulted minipage.
However, the next time the same program pointer is used,
it holds the old value and not the new one. Therefore, each
pointer dereferencing in the program is always performed
through the thread’s internal pointer. In this way, the cor-
rect view is always used. This is enabled with the help of
the instrumentation described in Section 5.

4. VARIABLE-SIZE DETECTION UNIT
As was mentioned before, the detection unit in our im-

plementation is dynamic. More precisely, we detect races in
granularity of minipages and not in granularity of a fixed
number of bytes. For this purpose, each minipage is associ-
ated with the information essential for the data race detec-
tion algorithms—the access history for Djit+and the current
candidate set and diagram state for Lockset.
The race detection mechanisms are activated in the page

fault handler, at the same place where the pointers to mini-
pages are swizzled. The handler is supplied with all the
necessary information. From the fault type, the access type
is deduced, and from the faulted address, the corresponding
minipage and respective view are calculated. Thereafter,
the access history and the lockset state of the minipage are
retrieved and the detection mechanisms invoked.
A single minipage can contain primitive types consisting

of bytes or words, as well as more complex user types. As
will become clear in Section 5 (describing instrumentation),

185

福昕
高亮

福昕
高亮

福昕
下划线

福昕
下划线

福昕
下划线

福昕
高亮

our detection granularity is at least the size of an entire ob-
ject defined by the classes and structures of the program. In
fact, in all modern object-oriented programming languages
the objects tend to be small and self-contained, consisting
of only strongly related data fields. Thus, the object granu-
larity is indeed the proper granularity to be employed.
Though our implementation is entirely transparent, we

still give a programmer the ability to fine-tune the detection
in order to adjust it to his or her specific needs. Thus, while
a single minipage may contain a single object, several objects
can be aggregated into a larger detection unit to occupy a
single minipage. A single minipage may even contain entire
arrays. In the case of arrays, it is also possible to locate each
of the array elements on a separate minipage.
It should be emphasized here that splitting an array across

several minipages still allocates all of its elements in one con-
tiguous area, exactly as is done by the original C++ alloca-
tion routines. The division to minipages is only logical and
it allows pointing to different elements of the array through
different views. In this way, it controls the size of the unit in
which data race detection is performed. Clearly, detecting
races for each element separately imposes greater overhead
than testing for the races in bunches. If the entire array is
placed on single minipage, it will resemble a large object,
with views swizzled for all the elements at once. Obviously,
this also minimizes the additional space that is needed for
the data race detection algorithms. It can, however, become
a source for false alarms, when different threads access non-
overlapping regions of the array.
Nevertheless, the granularity of detection has quite a use-

ful and important property—a race free program at some
given granularity will not introduce any races at any finer
granularity. Thus, it is a good idea to first locate all elements
of some array on one minipage; only if alarms are reported,
should one try splitting it into several units. If alarms still
appear, the detection granularity can be further refined un-
til either all alarms are determined false, or the data race
is discovered. Note that refining the detection granularity
in this way is a programmer-directed process, which also in-
volves high overhead. Therefore, it should be activated only
in debugging mode, when the programmer suspects certain
alarms to indicate real races.
In order to allow splitting array over several minipages,

the malloc and operator new[] functions are supplied with
additional parameters. The first is just the number of re-
quested elements (not used in malloc). The second param-
eter controls the number of subsequent array elements to be
placed on each minipage. If this parameter equals 1, then
each element resides on a separate minipage. If it equals the
number of requested elements, then all elements are placed
on one minipage. Every intermediate value between these
two limits is also acceptable. Since, obviously, this value
is user defined, it is specified by the programmer through
the use of code annotations. An example of the use of an
overloaded operator new[] function is depicted in Figure 6.

5. INSTRUMENTATION HIGHLIGHTS
In this section we describe how the user’s program should

be instrumented so that the race detection algorithms can
be correctly activated. For our instrumentation to work
properly, we require that the entire program code be avail-
able and compile correctly prior to being changed. Under
these conditions, we show how the instrumentation task can

Original code:
Type* arr1 = new Type[5];
Type* arr2 = new Type[7];
Type* arr3 = new Type[num];

Instrumented code:
⇓ The whole array is on one minipage
Type* arr1 = new(5, 5) Type[5];
⇓ Each element is on a separate minipage
Type* arr2 = new(7, 1) Type[7];
⇓ The array is on two minipages
Type* arr3 = new(num, num/2) Type[num];

Figure 6: Example of the use of an overloaded

operator new[] function to split arrays over

several minipages

be completed transparently by an automatic preprocessing
phase. We also guarantee that after our modifications are
completed, the program will still compile and run correctly.
For brevity’s sake, in what follows we give only the main

ideas of the instrumentation. The exact details appear in
the full version of the paper.
Every class or structure Type in the source code of the pro-

gram is forced to inherit from our SmartProxy<Type> tem-
plate class. This class has only public functions, henceforth
called smart functions, and no data members. Clearly, such
class hierarchy only expands the functionality of class Type.
The basic idea of our instrumentation is that the smart
functions, when applied on a shared object or a pointer to
it, locate the corresponding minipage and return the refer-
ence or the pointer to the object through the correct view.
These functions are called, respectively, smartReference()
and smartPointer(). The required minipage is calculated
from the this pointer passed as an implicit argument to
these smart functions. Then, the thread’s internal pointer
(Subsection 3.3) is used to return the correct view. Note
that the pointer or the reference returned by a smart func-
tion always refers to exactly the same object on which the
function was originally invoked. Thus, further access to its
data members or functions is still possible.
To enable the primitive types (int, double, etc.) to sup-

port the smart functions described above, we created wrap-
per classes. During the instrumentation process we sub-
stitute each potentially shared appearance of a primitive
type in the source code with a corresponding fully functional
wrapping class, which has the full set of smart functions.
The instrumentation of global and static objects and ar-

rays is supported as well. During the program initialization
phase, after these objects have already been constructed in
the data segment, they are copied to our shared space. All
accesses to the objects are then redirected to occur only
through our copies.
Finally, in the case that the source code is not avail-

able, we simulate the reading and/or writing of those mini-
pages which we suspect will be affected by the uninstru-
mented code. For this purpose, the SmartProxy<Type> class
contains two additional smart functions—read and write.
When invoked on an array, for example, these functions
“touch” all elements from the starting address of the ar-
ray to its very last element (unless the maximum number of
elements to be touched is specified).
An example of an instrumented function is depicted in

Figure 7.

186

Original code:
void func(Type* ptr, Type& ref, int num) {

for (int i = 0; i < num; i++) {
ptr->data +=

ref.data;
ptr++;

}
Type* ptr2 = new Type[20];
memset(ptr2, 0, 20*sizeof(Type));
ptr = &ref;
ptr2[0] = *ptr;
ptr->member func();

Instrumented code:
void func(Type* ptr, Type& ref, int num) {

for (int i = 0; i < num; i++) {
ptr->smartPointer()->data +=

ref.smartReference().data;
ptr++; ⇐ No access to shared memory

}
Type* ptr2 = new(20,2) Type[20]; ⇐ 2 elements/minipage
memset(ptr2->write(20), 0, 20*sizeof(Type));
ptr = &ref; ⇐ No access to shared memory
ptr2[0].smartReference() = *ptr->smartPointer();
ptr->member func(); ⇐ The code of the invoked

member function is instrumented

Figure 7: Example of an instrumented function

6. REPORTING RACE ATTRIBUTES

6.1 Obtaining Race Attributes
In the MultiRace system each reported data race and each

announced locking discipline violation are identified by the
following attributes:

1. The memory address of the raced object;

2. The minipage that contains the object (the address
above points inside this minipage);

3. The instruction completing the data race or the locking
discipline violation;

4. In the case of a data race, a previously logged instruc-
tion with which the current instruction is concurrent.

In order to be able to report the exact pairs of racing
instructions, the access history of every minipage (see Sub-
section 2.3.3) holds, in addition to the time frames, the in-
struction pointers (a.k.a. IPs) of the most recently logged
read and write in each of the threads. (The IP is available
from the information supplied by the operating system to
the page fault handler.) Hence, when a data race is detected,
the addresses of both racing instructions are at hand.
In the full paper we present an additional technique in

which the exact pairs of source file and line at which the
possible races occur can be determined during runtime. In
this way, later examination of the source code will reveal the
contents of the problematic instructions.

6.2 Reporting Races
We offer two methods for reporting races. In the first,

a report is made each time a data race is detected. This
is done by invoking a software breakpoint interrupt, int 3,
which freezes all threads and starts a debugger. The pro-
grammer can then query the faulted address and look in
the annotated source code (available from program’s debug
database) for the locations of the conflicting instructions.

The programmer can also retrieve additional information,
such as a thread’s stack contents and the values of rele-
vant global variables. After the source of the race has been
identified, the programmer can resume the execution of the
program and locate further races.
In the second method, all the relevant information is saved

for each data race that occurs during the program’s execu-
tion. During the system’s finalization phase, the debugger is
invoked and the list of all the detected races is also reported.
The programmer can then traverse this list of detected races
and learn their causes directly from the source code.
In contrast to data races, we cannot be sure whether the

locking discipline violations are real bugs. Therefore, rather
than suspending the program whenever such violations oc-
cur, we save all their relevant information. When the de-
bugger is invoked, either when a data race is detected or
during the finalization phase, this list can be traversed and
all violations easily located.

7. OPTIMIZATIONS
We analyzed several benchmark applications and, as ex-

pected, the two main sources of overhead were the smart
functions and the page faults. In this section we suggest
several optimizations that reduce both the number of faults
and the number of smart functions invoked during program
execution. Additional optimizations are presented in the full
version of the paper.

7.1 Loop Optimizations
Figure 8 shows two very efficient optimizations applied to

a simple loop. OPT1 can be used only if both arrays reside
entirely on corresponding single minipages and no synchro-
nization appears inside the loop. If these restrictions are
not applied, real races can be missed. In this optimization,
we distinguish between the first access and all successive ac-
cesses. Thus, we economize on the invocation of smart func-
tions and on the need to locate corresponding minipages and
views each time the elements of arrays are accessed.
The OPT2 optimization further extends the idea of OPT1

to arrays that occupy several minipages. The only restric-
tion in this case is that the elements must be accessed se-
quentially, without any synchronization inside the loop. The
OPT2 optimization first simulates write and read accesses
to each of the minipages occupied by both arrays and only
then executes the original code. This optimization becomes
most efficient when the number of elements in each array is
large and the number of minipages these elements occupy is
relatively small. The reason is that only the corresponding
minipages are traversed, rather than all the elements of the
array. In addition, there is no need to locate all the mini-
pages occupied by the array. Only the first minipage need be
located and the rest processed sequentially. Hence, OPT2
shows good speedups even when the number of elements per
minipage is relatively low.

7.2 Changing the Granularity
Figure 9 demonstrates the reduction in slowdowns for a

race-free version of the FFT application, when the granu-
larity of source and destination matrices is changed from 1
complex number per minipage to 256 (the overheads were
calculated relatively to the original uninstrumented version
with the corresponding number of threads). The figure also
depicts the overheads for a situation in which each matrix is

187

福昕
高亮

福昕
下划线

福昕
高亮

福昕
高亮

ORG — Original code:
for (i = 0; i < size; i++)

arr1[i] += arr2[i];

BAS — Code after initial instrumentation:
for (i = 0; i < size; i++)

arr1[i].smartReference() += arr2[i].smartReference();

OPT1 — Code after distinguishing the first access
from successive accesses. Accessing the first elements
of each array through smart functions and the rest
through regular pointers:
if (size > 0)

arr1[0].smartReference() += arr2[0].smartReference();
for (i = 1; i < size; i++)

arr1[i] += arr2[0];

OPT2 — Same code as original, except for first simu-
lating write and read accesses to all elements of corre-
sponding arrays. The size of the array is passed to the
write() and read() functions, so that only the correct
number of minipages is affected:
arr1->write(size);
arr2->read(size);
for (i = 0; i < size; i++)

arr1[i] += arr2[i];

Figure 8: Loop optimizations

Slowdowns of FFT using different granularities

0.1

1

10

100

1000

1 2 4 8 16 32 64 128 256 all

Number of complex numbers in minipage

S
lo

w
d

o
w

n
 (

lo
g

ar
it

h
m

ic
 s

ca
le

)

1 thread 2 threads 4 threads 8 threads 16 threads 32 threads 64 threads

Figure 9: Overheads of a race-free FFT benchmark applica-
tion with different granularities

entirely located on a corresponding single minipage. In this
case, the overheads drop sharply.

8. MEASURED OVERHEADS
In this section we present the MultiRace overheads mea-

sured for six classical benchmark applications: Integer-Sort
(IS), Water-nsquad (WATER), LU-contiguous (LU), Fast
Fourier Transform (FFT), Successive Over-Relaxation (SOR)
and the Traveling Salesman Problem (TSP). For evaluation
of overheads we used the data-race-free versions of the ap-
plications. Therefore, we were able to place each of the
allocated arrays on single minipages (the default configura-
tion of MultiRace). Table 1 shows some characteristics of
these applications.
We performed our measurements on the Microsoft Win-

dows NT operating system, running on a 4-way IBM Netfin-
ity server (550MHz) and 2GB of RAM. We tested the appli-
cation using 1, 2, 4, 8, 16, 32 and 64 threads. The original
non-instrumented versions behaved nicely, meaning that the
best execution times were achieved with four threads and

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1 2 4 8 16 32 64
Number of Threads

O
ve

rh
ea

ds
 (D

R
D

/N
o

D
R

D
)

FFT IS LU SOR TSP WATER

Figure 10: Overheads with/without data race detec-
tion (DRD) measured for the 6 benchmark applica-
tions

took about 25% of the execution time with only one thread.
This suggests that the applications were programmed cor-
rectly and that they are highly suitable for this kind of
benchmark. We were glad to find that our instrumented
versions containing the data race detection mechanisms ex-
hibited the same speedups, indicating that we did not intro-
duce too much noise into the applications.
In fact, for some applications, especially for a low num-

ber of threads, the instrumented versions with all the data
race detection mechanisms run even faster than the original
unaltered applications. In most cases, the reason for this
rather unexpected behavior stems from the differences be-
tween the standard allocation routine and our version. Our
allocation method was found to be more suitable for a mul-
tithreaded environment than the one implemented by the
standard malloc and operator new functions. The reason is
the access pattern of the applications to large arrays, which
causes lots of misses in the caches of the executing proces-
sors. This is explained in more detail in the full version of
the paper.
Figure 10 presents the overheads obtained for our bench-

mark applications (without taking into account the time re-
quired to initialize the system). The overheads seem to be
low and steady for 1–8 threads. The applications have either
very low overheads or none at all. This suggests that our
system is scalable in the number of CPUs. However, most of
the applications suffer from heavier overheads for a higher
number of threads. The reason is that the access logging and
race detection mechanisms have to be activated separately
for each of the running threads. In addition, more threads
require more inter-thread communication. All these result
in more time frames, more page faults, and thus more work
performed by MultiRace per benchmark execution.
Figure 11 shows the breakdowns of the overheads for the

tested benchmark applications. The breakdowns are pre-
sented according to the overhead imposed by the addition
of instrumentation and memory request interception, the
supplementary overhead caused by the write and read page
faults required to record the accesses, and the overhead
from adding the data race detection algorithms. From these
breakdowns it can be seen that most of the overhead is
caused by the page faults, while the overheads due to the

188

Input Set Shared Number of Write/Read Number of Time in
Memory Minipages Faults Time Frames sec (no DR)

FFT 28 ∗ 28 matrix 3 MB 4 9/10 20 0.054
IS 223 numbers, 215 values,

15 repeats 128 KB 3 60/90 98 10.68
LU 1024 ∗ 1024 matrix,

block size 32 ∗ 32 8 MB 5 127/186 138 2.72
SOR 1024 ∗ 2048 matrices,

50 iterations 8 MB 2 202/200 206 3.24
TSP 19 cities, recursion level 12 1 MB 9 2792/3826 678 13.28
WATER 512 molecules, 15 steps 500 KB 3 15438/15720 15636 9.55

Table 1: Different characteristics of the benchmark applications (for two threads)

FFT

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1 2 4 8 16 32 64
Number of threads

No DRD +Instrumentation +Write Faults +Read Faults +Djit +Lockset

6|5

9|10

15|20
27|40 51|80

99|160

195|320

IS

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1 2 4 8 16 32 64
Number of threads

No DRD +Instrumentation +Write Faults +Read Faults +Djit +Lockset

0|0 60|90 244|424
974|1814

3885|7485

15452|30332

61919|122399

LU

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1 2 4 8 16 32 64
Number of threads

No DRD +Instrumentation +Write Faults +Read Faults +Djit +Lockset

65|63 127|186 219|398
396|805 688|1551

1218|2901
2158|5453

SOR

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1 2 4 8 16 32 64
Number of threads

No DRD +Instrumentation +Write Faults +Read Faults +Djit +Lockset

102|100
202|200

402|400
802|800

1602|1600
3202|3200

6402|6400

TSP

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 4 8 16 32 64
Number of threads

No DRD +Instrumentation +Write Faults +Read Faults +Djit +Lockset

2794|3825 2792|3826 2788|3827 2808|3864 2820|3904

2834|3966

2876|4106

WATER

0

0.5

1

1.5

2

2.5

1 2 4 8 16 32 64
Number of threads

No DRD +Instrumentation +Write Faults +Read Faults +Djit +Lockset

7788|7920 15438|15720 23178|23760 38658|39840

67708|70090

123881|128663

220864|230446

Figure 11: Breakdowns of the overheads measured
for the benchmark applications. The times are rel-
ative to the original uninstrumented version with
the corresponding number of threads. The numbers
above the bars indicate, respectively, the number of
write and read faults.

data race detection algorithms are much lower.
In addition to the breakdowns, Figure 11 shows the num-

ber of write and read faults for the corresponding number
of threads2. It is easy to see that for all the benchmark
applications except TSP, the number of faults increases lin-
early with the number of threads. This increase also exists
in TSP, but it is less evident because of the different path
cut-offs TSP performs. These cut-offs increase TSP’s de-

2We apologize for the small font size in this figure, imposed
by space limitations. The interested reader can learn the
numbers from the full paper.

pendency on thread scheduling and make its behavior less
deterministic than that of other applications.
The linear growth in the number of page faults causes

the work performed by Djit+ to increase quadratically with
the number of threads. This is because each access in the
faulting thread is always checked against the most recent
accesses in each of the other threads. The Lockset algorithm,
however, exhibits only a linear growth.

9. RELATED WORK
Netzer and Miller formally defined and characterized the

different types of data races in [15]. They also showed how
to further improve the data race detection accuracy [14].
They introduced a two-phased method that helps to distin-
guish feasible data races from artifacts that only appear as
a result of earlier races. In the first phase apparent data
races are detected. In the second, postmortem phase, they
are validated. In this way, either each detected race is guar-
anteed to be feasible, or, when insufficient information is
available, sets of races are identified within which at least
one is guaranteed to be feasible.
In [5], Dinning and Schonberg empirically compared two

algorithms for data race detection in parallel Fortran programs—
English-Hebrew labeling and Task Recycling. These meth-
ods also realize the Lamport’s happens-before relation, but
they are different from the vector-time [12] that we used in
our work, and are more suitable for the fork-join paradigm.
The overheads of the Task Recycling algorithm, which was
found to be more efficient, ranged from 150% to over 1000%.
Hood et al. presented in [8] a combined approach for PCF

Fortran programs that coordinates static analysis with an
on-the-fly data race detection algorithm. The static infor-
mation collected during program analysis was used for min-
imizing the number of checks during the execution, as well
as for reducing the number of false alarms. To further im-
prove performance, they limited their detection to programs
without nested parallelism and optimized the algorithm at
the cost of completeness and accuracy of race detection. By
this, they managed to get only a 40% overhead.
Savage’s Eraser, described in [17], uses binary rewriting

and is intended for lock-based synchronization only. Instead
of detecting data races according to the happens-before re-
lation, it uses the lockset refinement to find violations of
locking discipline. Since the technique is too conservative
(not every violation of the discipline is necessarily a race),
Eraser suffers severely from the false alarm problem. In ad-
dition, it uses a fixed-size unit for detection—a fact that

189

further reduces its accuracy. The tool typically slows down
applications 10 to 30 times.
Ronsse and Bosschere implemented a non-intrusive on-

the-fly data race detection tool, which is a combination of ex-
ecution record/replay with an on-the-fly detector [16]. They
suggested that races should be located using two “equiva-
lent” executions. In the first phase, a trace of the order of
all synchronization operations is created, which is then used
in the second phase to replay the execution and detect data
races (in fixed granularity). In their implementation, the
first recording phase imposed only a minor overhead of 2%
on average. The second replay phase, however, slowed down
typical applications 30 times on average (up to 80 in the
worst case).

10. CONCLUSIONS
Until recently, on-the-fly data race detection in multi-

threaded environments was considered to be very inefficient
and highly imprecise. Hence, in all currently available tech-
niques there is a tradeoff—a reduction in runtime overhead
and space requirements results in an increase in the number
of missed races and/or the amount of false detection. To the
best of our knowledge, all dynamic data race detection tools
are restricted to detection in fixed size granularity. This
further decreases their accuracy.
In this paper we suggest a framework called MultiRace—

an efficient transparent tool that combines two very powerful
algorithms for on-the-fly data race detection at object-size
granularity. By employing optimized and extended versions
of Djit+ and Lockset, MultiRace detects respectively a sub-
set and a superset of all the raced shared locations in the
execution of a program. For many types of programs this
ensures that most of the possibly raced locations are de-
tected, while guaranteeing that all data races that actually
occurred will be reported. Because of this attribute, Multi-
Race is unparalleled by any other available on-the-fly detec-
tion technique.
In order to detect races in granularity of program objects,

MultiRace takes advantage of a transparent source code in-
strumentation approach. This allows to perform compile-
time static analysis, to employ different optimizations and,
most importantly, to use fine-grain detection on global and
static objects as well as on dynamically allocated data. In
addition, MultiRace makes novel use of memory mappings
and pointer swizzling. This further simplifies the access log-
ging and the data race detection mechanisms.
Data race detection makes it easier for the programmer

to trust the program. It also spares the necessity of adding
synchronization “just in case”. By logging a small portion of
all the accesses, MultiRace imposes only a minor overhead
on the tested program. Using MultiRace, accurate, efficient,
and transparent data race detection can be performed while
the program is executing in production mode.

11. REFERENCES
[1] S. V. Adve and M. D. Hill. A unified formalization of

four shared-memory models. Technical report,
University of Wisconsin, Sept. 1992.

[2] S. V. Adve, M. D. Hill, B. P. Miller, and R. H. B.
Netzer. Detecting data races on weak memory
systems. In Proceedings of the 18th Annual
International Symposium on Computer Architecture
(ISCA’91), pages 234–243, May 1991.

[3] V. Balasundaram and K. Kennedy. Compile-time
detection of race conditions in a parallel program. In
Proceedings of the 3rd International Conference on
Supercomputing, pages 175–185, June 1989.

[4] T. Brecht and H. Sandhu. The Region Trap Library:
Handling traps on application-defined regions of
memory. In USENIX Annual Technical Conference,
Monterey, CA, June 1999.

[5] A. Dinning and E. Schonberg. An empirical
comparison of monitoring algorithms for access
anomaly detection. In Proceedings of the Second ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 1–10, Mar. 1990.

[6] P. Emrath and D. Padua. Automatic detection of
nondeterminacy in parallel programs. In Proceedings
of the ACM SIGPLAN/SIGOPS Workshop on Parallel
and Distributed Debugging, pages 89–99, May 1988.

[7] C. Flanagan and S. Freund. Detecting race conditions
in large programs. In Workshop on Program Analysis
for Software Tools and Engineering (PASTE 2001),
pages 90–96, June 2001.

[8] R. Hood, K. Kennedy, and J. Mellor-Crummey.
Parallel program debugging with on-the-fly anomaly
detection. In Proceedings of the 1990 Conference on
Supercomputing, Nov. 1990.

[9] A. Itzkovitz and A. Schuster. Multiview and
Millipage—fine-grain sharing in page-based DSMs. In
Proceedings of the Third Symposium on Operating
Systems Design and Implementation (OSDI), pages
215–228, Feb. 1999.

[10] A. Itzkovitz, A. Schuster, and O. Zeev-Ben-Mordechai.
Towards integration of data race detection in DSM
systems. Journal of Parallel and Distributed
Computing (JPDC), 59(2), pages 180–203, Nov. 1999.

[11] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7), pages 558–565, July 1978.

[12] F. Mattern. Virtual time and global states of
distributed systems. Parallel and Distributed
Algorithms, Elsevier Science Publishers, Amsterdam,
pages 215–226, 1989.

[13] R. H. B. Netzer and B. P. Miller. On the complexity
of event ordering for shared-memory parallel program
executions. In 1990 International Conference on
Parallel Processing, 2, pages 93–97, Jan. 1990.

[14] R. H. B. Netzer and B. P. Miller. Improving the
accuracy of data race detection. In Proceedings of the
1991 Conference on the Principles and Practice of
Parallel Programming, pages 133–144, Apr. 1991.

[15] R. H. B. Netzer and B. P. Miller. What are race
conditions? Some issues and formalizations. ACM
Letters on Programming Languages and Systems, 1,
pages 74–88, Mar. 1992.

[16] M. Ronsse and K. D. Bosschere. RecPlay: A fully
integrated practical record/replay system. ACM
Transactions on Computer Systems, 17(2), pages
133–152, 1999.

[17] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: A dynamic data race detector
for multithreaded programs. ACM Transactions on
Computer Systems, 15(4), pages 391–411, Oct. 1997.

190

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

