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ABSTRACT

Multithreaded concurrent programs often exhibit wrong be-
haviors due to unintended interferences among the concur-
rent threads. Such errors are often hard to find because they
typically manifest under very specific thread schedules. Tra-
ditional testing, which pays no attention to thread schedules
and non-deterministically exercises a few arbitrary sched-
ules, often misses such bugs. Traditional model checking
techniques, which try to systematically explore all thread
schedules, give very high confidence in the correctness of the
system, but, unfortunately, they suffer from the state explo-
sion problem. Recently, dynamic partial order techniques
have been proposed to alleviate the problem. However, such
techniques fail for large programs because the state space
remains large in spite of reduction. An inexpensive and a
simple alternative approach is to perform random testing by
choosing thread schedules at random. We show that such
a naive approach often explores some states with very high
probability compared to the others. We propose a random
partial order sampling algorithm (or RAPOS) that partly
removes this non-uniformity in sampling the state space.
We empirically compare the proposed algorithm with the
simple random testing algorithm and show that the former
outperforms the latter.

Categories and Subject Descriptors
D.2.5 [Software Engineering): Testing and Debugging

General Terms
Testing tools
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1. INTRODUCTION

Multithreaded programs often exhibit wrong behaviors
due to unintended interferences among the concurrent
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threads. Such concurrent errors—such as data races and
deadlocks—are often difficult to find because they typically
happen under very specific interleaving of the executing
threads. A traditional method of testing concurrent pro-
grams is to repeatedly execute the program with the hope
that different test executions will result in different interleav-
ings. There are a few problems with this approach. First,
testing being carried out in a particular environment often
fails to come up with interleavings that can potentially hap-
pen in different environments, such as under different system
loads. Second, testing depends on the underlying operating
system or the virtual machine for thread scheduling—it does
not try to explicitly control the thread schedules; therefore,
testing often ends up executing the same interleaving many
times. Despite these limitations, testing is an attractive
technique for finding bugs in concurrent systems for several
reasons: 1) testing is inexpensive compared to sophisticated
techniques such as model checking and verification, 2) test-
ing often scales to very large programs.

An alternative approach to testing is model checking [8,9,
14,16,17,32] or systematic search of the state space. Model
checkers systematically control the thread scheduler to ex-
plore all possible behaviors of a program. Being systematic
and exhaustive in nature, model checkers can often prove
that a concurrent system satisfies its desired properties. Un-
fortunately, a key problem with model checking is that it
does not scale with program size. This is because the num-
ber of possible interleavings of a concurrent program often
grows exponentially with the length of execution. This is
the well-known state-explosion problem.

Partial order reduction methods [13,14,25,31] have been
proposed to address the state-explosion problem. Such
methods exploit the fact that a number of interleavings of
a concurrent system are equivalent to each other because
they correspond to the different execution orders of various
non-interacting (or independent) instructions from concur-
rent threads. Different execution orders of non-interacting
instructions from concurrent threads result in the same over-
all final state; therefore, if one execution order finds a defect,
such as a deadlock, a data-race, or an assertion violation,
then all equivalent execution orders will also detect the de-
fect. Such equivalent interleavings are abstracted in terms
of a happens-before relation which defines a partial order
over all the instructions executed during an execution. Con-
current executions having the same happens-before relation
are equivalent. A set of equivalent executions is abstractly
called a Mazurkiewicz’s trace [20], or simply a partial order.
The goal of partial order reduction techniques is to explore



at least one execution from each partial order and avoid
exploring more than one execution from the same partial
order. Traditionally, partial order techniques perform static
program analysis to determine the interacting (or depen-
dent) instructions. However, due to the limitations of static
analysis in the presence of pointers and heap memory, static
partial reduction usually fails to achieve significant amount
of reduction for real-world programs. More recently, a dy-
namic technique for partial order reduction [11] has been
proposed to remove this limitation.

Although partial order reduction helps model checkers to
reduce the search space, they still cannot fully explore all
possible behaviors of large concurrent programs with lim-
ited time and memory resources. Moreover, model checkers
often use depth-first search or breadth-first search strategies
to explore the state space. If the time budget of a model
checker is restricted, such search strategies often result in a
very localized search of the state-space.

An attractive alternative to prevent model checkers from
getting stuck in a localized search is to perform random-
ized search. A simple randomized search strategy would do
the following. It would pick a random thread to execute
at every execution point where a potential thread switch
can happen. This simple approach would naturally perform
better than traditional testing because it ezplicitly tries to
control the scheduling of the threads, rather than depending
on the underlying operating system for scheduling. On the
other hand, unlike model checkers, the simple randomized
search strategy would explore wide variety of interleavings
without getting stuck in a local search.

A fundamental problem with the randomized search strat-
egy is that it samples all possible non-equivalent thread in-
terleavings in a very non-uniform way—some partial orders
are sampled more often than the others. This is because the
number of linearizations of partial orders vary widely from
one partial order to another. This is not a desirable situation
because most concurrency related errors, such as deadlocks,
data-races, and assertion violations, are robust with respect
to partial orders—if one linearization of a partial order ex-
hibits an error, then all linearizations will also exhibit the
error. A natural question to ask is “Can we sample partial
orders more uniformly?”

This paper proposes a novel algorithm to sample partial
orders more uniformly than the simple randomized algo-
rithm. Specifically, we propose a random partial order sam-
pling algorithm (or RAPOS). Unlike the simple randomized
algorithm, RAPOS does not pick a single random thread at
every point in execution where a potential thread switch can
happen. Instead, RAPOS picks a random set of threads at
every execution point such that the next instructions from
those threads are independent of each other; the next in-
structions from the set of random threads are then executed
simultaneously without imposing any particular ordering on
the instructions. The instructions in the set being indepen-
dent of each other, any ordering of the instructions would
result in the same partial order. Therefore, by avoiding the
sampling of a random ordering of the independent instruc-
tions (i.e., by picking a deterministic ordering), we impose
probability one on a single ordering and probability zero on
other equivalent orderings. This is the key insight behind
RAPOS.

It is worth mentioning that one cannot simply randomize
a dynamic partial order reduction algorithm to uniformly

sample partial orders. [Phislisibecauseraldynamic partial
order reduction algorithm requires the knowledge of all the
dependencies among various instructions. In a randomized
setting, we cannot dynamically collect all the dependencies
among the instructions as we do not perform an exhaustive
g§earchl Specifically, a dynamic partial order reduction al-
gorithm computes a persistent set at every state at runtime
and nses this set to determine which threads can bhe executed
next from the state. The computation of a persistent set at
a given state requires the exploration of all states that can
be reached from the given state. Unfortunately, this requires
an exhaustive search, which is not possible in a randomized
setting.

We have implemented the simple randomized algorithm
and RAPOS for concurrent Java programs in a tool called
CALFUZzZER. We compare both algorithms on a variety
of concurrent Java programs including open libraries and
closed applications. In the experiments, we demonstrate the
following facts.

e RAPOS samples partial orders more uniformly than
the simple randomized algorithm. This implies that
defects, such as deadlocks, data-races, and assertion
violations, that are invariant with respect to all lin-
earizations of a partial order are sampled more uni-
formly.

e The number of partial orders sampled by RAPOS af-
ter a fixed number of executions is significantly greater
than the same number for the simple randomized al-
gorithm.

e The expected number of executions required to find
a defect using RAPOS is significantly less than the
simple randomized algorithm.

Our implementation is extensible—other stateless explicit
scheduling strategies for Java threads, including full-fledged
stateless model checkers, can be implemented in the CAL-
FuzzeR framework. We have made the tool publicly avail-
able.

The rest of this paper is organized as follows. In Section 2,
we give an overview of RAPOS using a simple motivating
example. We describe the details of the RAPOS algorithm
in Section 3. In Section 4 and Section 5, we describe the
implementation of RAPOS in the CALFUZZER framework
and the results of our experiments, respectively. Related
work is discussed in Section 6 followed by conclusion.

2. MOTIVATING EXAMPLE

We describe the simple randomized algorithm and the ran-
dom partial order sampling algorithm using a simple exam-
ple and show that RAPOS samples partial orders more uni-
formly than the simple randomized algorithm.

Consider the two-threaded program in Figure 1. The pro-
gram has two shared variables x and y, each having an initial
value 0. Thread 1 updates the variable y three times before
assigning 4 to x. Thread 2 raises an error if x is equal to 4.
The program can exhibit five interleavings as shown in Fig-
ure 2. Out of these five interleavings, the last interleaving
violates the assertion.

In the program, the instruction x = 4; in Thread 1 and
the instruction if (x==4) assert(false); in Thread 2 are
dependent as they access the same shared variable x and at
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Initially x = Oandy = 0
Thread 1: Thread 2:

if (x==4) assert(false);

M <<
nn
B W N -

Figure 1: Simple Example

if (x==4) assert(false); y=1; y=2; y=3; x=4;

y=1; if (x==4) assert(false); y=2; y=3; x=4;
y=1; y=2; if (x==4) assert(false); y=3; x=4;
y=1; y=2; y=3; if (x==4) assert(false); x=4;
y=1; y=2; y=3; x=4; if (x==4) assert(false);

Figure 2: Five Interleavings Exhibited by the Simple
Example

least one of the accesses is a write. As such, the program
has two distinct partial orders. The first four interleavings
in Figure 2 are linearizations of one partial order and the last
interleaving is the linearization of the other partial order.

The simple randomized algorithm at any state picks one
of the enabled threads uniformly at random and executes its
next instruction. For example, in the initial state, the algo-
rithm picks Thread 1 with probability 0.5 and Thread 2 with
probability 0.5. If Thread 1 is picked, then the algorithm ex-
ecutes y = 1; and again flips a coin to pick either Thread 1
or Thread 2. This is repeated until the program terminates.
A simple computation shows that the simple randomized al-
gorithm will sample the first interleaving with probability
0.5, the second interleaving with probability 0.25, the third
interleaving with probability 0.125, the fourth interleaving
with probability 0.0625, and the fifth interleaving with prob-
ability 0.03125. Therefore, one partial order will be sampled
with probability 0.96875 and the other will be sampled with
probability 0.03125. This also implies that the assertion
violation will be discovered with probability 0.03125. Ide-
ally, we would like to come up with an algorithm that would
sample each partial order with probability 0.5 so that we can
detect the assertion violation with probability 0.5. We will
show, in Section 3.5, that RAPOS will sample each partial
order more uniformly.

3. ALGORITHMS

In this section, we give a detailed description of the sim-
ple randomized algorithm and the RAPOS algorithm. We
describe our algorithms using a simple abstract model of
concurrent systems.

3.1 Background Definitions

We consider a concurrent system composed of a finite set
of threads. Each thread executes a sequence of statements
and communicates with other threads through shared ob-
jects. In a concurrent system, we assume that each thread
terminates after the execution of a finite number of state-
ments. At any point of execution, a concurrent system is
in a state. Let S be the set of states that can be exhibited
by a concurrent system starting from the initial state so. A
concurrent system evolves by transitioning from one state

RandomExecutionSimple() {
s = So;
while (Enabled(s) # 0) {
take a random t out of Enabled(s);
s := Execute(s, t);

}

if (Alive(s) #0) {
print “Deadlock Detected”;
}
}

Figure 3: Simple Randomized Testing Algorithm

to another state. Let T be the set of all transitions of a
system. We say s —L, & to denote that the execution of the
transition ¢ changes the state s to s’. A transition is always
caused by the execution of a statement by a thread. The be-
havior of a concurrent system can be expressed in terms of
a transition system represented by a tuple (S, A, so), where

e S is the set of states of the system,
e A C S xS is a transition relation defined as

(s,s)YeAiff HeT:s s

e sg € S is the initial state.

Enabled(s) denotes the set of transitions that are enabled
in the state s. Alive(s) denotes the set of threads whose
executions have not terminated in the state s. A state s is
in deadlock, if the set of enabled transitions at s (i.e. En-
abled(s)) is empty and the set of threads that are alive (i.e.
Alive(s)) is non-empty.

3.2 Simple Randomized Algorithm

A simple randomized algorithm to test a concurrent sys-
tem is described in Figure 3. Starting from the initial state
So, this algorithm, at every state, randomly picks a tran-
sition enabled at the state and executes it. The algorithm
terminates when the system reaches a state that has no en-
abled transition. At the termination, if there is at least one
alive thread, then the algorithm reports a deadlock.

3.3 Background Definitions for Partial Order
Based Techniques

In this section, we recall some definitions from [13] that
are necessary to describe our random partial order sampling
algorithm. Partial order reduction methods in model check-
ing exploit the fact that a number of execution paths of a
concurrent system are equivalent to each other because they
correspond to different execution orders of the same nonin-
teracting transitions. Exploring different execution orders
of noninteracting transitions always result in the same final
state. If two transitions do not interact with each other,
then we call them independent. For example, a transition
denoting the acquire of a lock Il; by a thread p; is inde-
pendent of a transition denoting the acquire of a lock lo by
another thread p2, if 1 and l> are different locks. Two tran-
sitions are said to be dependent, if they are not independent.
Transitions from the same thread are always dependent on
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each other. Similarly, the acquire of the same lock by two
threads are dependent on each other.

The execution of a concurrent system can be represented
by a sequence of transitions. Specifically, 7 = t1t2...t, is a
transition sequence if there exists states s1, s2,..., Sn+1 such
that s1 is the initial state and

t2

t1 tn
S§1 —> 82 — ... — Sn+1

Note that in a transition sequence, a transition ¢t € 7' can
appear several times. We say that t; = t; in a transition
sequence iff i = j.

In a transition sequence, if we swap adjacent transitions
that are independent, then the overall behavior of the tran-
sition sequence does not change. For example, if a transition
sequence results in a deadlock state (or an assertion violation
in a thread), then any transition sequence that is obtained
by swapping adjacent independent transitions will also result
in a deadlock state (or an assertion violation in the thread.)
Thus, by swapping adjacent independent transitions in a
transition sequence, we get other transition sequences that
are equivalent with respect to finding bugs. This notion of
equivalence can be formalized in terms of a happens-before
relation < defined as follows. The happens-before relation
= for a transition sequence 7 = tita...t, is defined as the
smallest relation such that

1. if ¢; and t; are dependent and 1 < ¢ < j < n, then
t; = tj7 and

2. = is transitively closed.

Thus < is a partial order relation. All transition sequences
that are linearizations of the same partial order are equiva-
lent. We will simply call such an equivalence class a partial
order (often called Mazurkiewicz’s trace.)

3.4 RAPOS: the Random Partial Order Sam
pling Algorithm

Partial order reduction methods exploit the fact that ex-
ploring one linearization of each partial order is sufficient
for detecting any deadlock or assertion violation. There-
fore, traditional model checking algorithms incorporating
partial order reduction, explore at least one linearization of
each partial order and try to avoid the exploration of more
than one linearization of the same partial order. Unfortu-
nately, model checkers usually do not scale for programs hav-
ing large number of partial orders. Moreover, many model
checkers that try to perform depth-first search or breadth-
first search often end up doing very localized search of the
state space. Randomized state space search tries to remove
this limitation by guaranteeing that any execution path of
a concurrent system can be sampled with almost uniform
probability. The simple randomized testing algorithm pre-
sented in Section 3.2 is an example of such a randomized
algorithm.

However, the simple randomized testing algorithm pre-
sented in Section 3.2 can end up sampling some partial or-
ders more often than the others. This is because the number
of linearizations of partial orders vary widely from one par-
tial order to another. Given this non-uniformity, the sim-
ple randomized algorithm will sample partial orders having
more linearizations more frequently than the others. We ex-
perimentally demonstrate this fact in Section 5.3. Another

non-desirable consequence of this non-uniformity in the dis-
tribution of partial orders is that the probability of finding
bugs that are exposed by partial orders having small num-
ber of linearizations would be very low. Next, we present an
algorithm that will alleviate this problem.

Our random partial order sampling algorithm tries to
sample partial orders more uniformly than the simple ran-
domized algorithm. The algorithm is shown in Figure 4.
In the algorithm, we use two sets, namely schedulable and
scheduled, to compute a random thread schedule at runtime.
These two sets are computed dynamically. We next infor-
mally describe the characteristics of these two sets.

e [schedulable]: At any state s in an execution, the set
schedulable is a subset of the set of enabled transitions
at the state s. The set Enabled(s)\ schedulable at a
state s contains those transitions whose execution we
want to delay until we have seen the execution of a
dependent transition. Therefore, the set Enabled(s)\
schedulable behaves like a sleep set [13].

e [scheduled]: The set scheduled is a random subset of
schedulable such that the transitions in scheduled are
mutually independent. The set contains those transi-
tions that our algorithm actually schedules next. Since
the transitions in the set scheduled are independent of
each other, we get the same partial order if we execute
the transitions in scheduled in any order.

RAPOS works as follows. Initially, RAPOS initializes the
set schedulable to the set Enabled(so). Then RAPOS does
the following in a loop until there is no enabled transition.
RAPOS randomly chooses a non-empty subset of schedulable
such that the transitions in the subset are mutually indepen-
dent. We call this subset scheduled. The function RandIn-
dependentSubset (described in Figure 5) is used to choose
this subset. RAPOS then executes the transitions in the
set scheduled concurrently, i.e., without imposing any ran-
dom ordering on the execution. This way RAPOS samples
one execution with probability one and samples the other
equivalent executions corresponding to different orderings

with probability zero. EAGhiESitoNAnMhESe0ERaBIEA(S)Y

After the execution of the transitions in the set scheduled,
RAPOS determines the transitions in the set Enabled(s)\
scheduled that can be waked up from the delay. All such
transitions and the next enabled transitions of the threads
that RAPOS just executed are put in the set schedulable.
The remaining transitions in the set Enabled(s)\ schedula-
ble(s) continue to delay as in a sleep set. It may happen
that the set schedulable is empty because all the transitions
in the set scheduled have got disabled and no transition from
the set Enabled(s)\ scheduled has been waked up. In such
a case, to avoid the algorithm from getting stuck, RAPOS
randomly selects a transition from the set Enabled(s) and
put it in the set schedulable. RAPOS continues the loop.
In the randomized algorithm, rather than picking a tran-
sition from the set of all enabled transitions uniformly at
random, we randomly compute a subset of enabled transi-
tions (i.e. the set scheduled) such that the transitions in the
set are mutually independent. Subsequently, the transitions
in this subset are executed simultaneously without imposing
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RrAPOS() {
s = So;
schedulable := Enabled(s);
while (Enabled(s) # () {
scheduled := RandIndependentSubset (Sehedulable );
for each t € scheduled
s := Execute(s, t);
schedulable := {t' € Enabled(s) | 3t € scheduled
such that ¢ and ¢’ are dependent };
if (schedulable = 0)
add a random element from Enabled(s) to schedulable

}

if (Alive(s) #0) {
print “Deadlock Detected”;
}

}

Figure 4: Random Partial Order Sampling Algo-
rithm (RAPOS)

// returns a non-empty random subset of S such that all
// the transitions in the subset are mutually independent
RandIndependentSubset (SMS&ER) {

let t be a random element in S

TmpSet = {t};
foreach t in S
if (V¢' € TmpSet. ¢ and t’ are independent)
add t to TmpSet with probability 0.5;
return TmpSet;

}

Figure 5: Random Subset Selection Algorithm

any particular ordering. This enables us to impose probabil-
ity one on a single ordering and probability zero on other
equivalent orderings. Moreover, the set Enabled(s)\ schedu-
lable delays some transitions. This enables us to impose zero
probability on the execution of transitions that would not
contribute in the computation of a new partial order. This in
turn results in a more uniform distribution over the distinct
partial orders than the simple randomized algorithms. We
demonstrate this fact using a simple example in Section 3.5
and empirically validate the fact in Section 5.

The soundness of the random partial order sampling algo-
rithm is given by the following theorem. The proof of this
theorem gives further insight on the working of the RAPOS
algorithm.

THEOREM 1. RAPOS samples any feasible interleaving of
a concurrent system with non-zero probability.

ProoF. Consider an execution 7 = t1t2...%t, and let < be
the happens-before relation for 7. Let T' = {t1,t2,...,tn}.
If T/ C T, then the set of minimal elements of 7T”, denoted
by g(T"), is defined as the set {¢ € T' | there exists no t' € T"
such that ¢t # t' and t' < t}. Given a subset T of T', we also
define f(T') = {t € T | there is a t' € T’ such that ¢t # t’
and t' < t}, i.e. f(T") is the set of all elements in T that are
strictly greater than any element in 7”. Let h = go f and
T; = h'(g(T)). The following two lemmas hold.

LEMMA 2. In the sequence To,Th, T2, ... there is a finite

1 > 0 such that for all j > 1, T; = 0.

ProOF. It follows from the definition of f and g that for
any ¢ > 0, 7; and T;41 are disjoint. It also follows from
the definition of f that for any ¢ > 0, any element in T;4+1
is greater than any element in 7;. Since T; and T;41 are
disjoint and any element in T;4; is greater than any element
in T;, for any ¢ > 0 and j > 4, T; and T} are disjoint and
any element in 7} is greater than any element in T;. Since
T is finite, h(@) = 0, and T; and T; are disjoint, the lemma
holds. [

LEMMA 3. Let m be such that for all0 < j < m, T; # 0
and Tyl = 0. Then T = UOSjSmTj.

Proor. Consider an element t; € T. Then we can find a
maximal sequence t, 1], . .., t;, such that each element in the
sequence is a distinct element of 7" and ¢, < t; < ... < t,.
Then t; € To, th € Th, ..., t; € T;. Therefore, the lemma
holds. [

The preceding lemmas show that {To,71,..., T} is a dis-
joint partition of T" and all transitions in a given 7; are mu-
tually independent. Moreover, the functions f and g being
deterministic, such a partition is unique for a given partial
order. In the (i + 1)™ iteration of the RAPOS algorithm,
there is a non-zero probability that the set scheduled is equal
to T;. Therefore, there is a non-zero probability of sampling
an execution that is equivalent to 7. [

Although, we can prove the soundness of the algorithm,
we do not know how to mathematically show that the algo-
rithm samples partial orders more uniformly. However, the
above proof gives the following important insight about the
RAPOS algorithm. Given an execution 7, the sequence of
sets of transitions Ty, 741,15, . .. gives a canonical represen-
tation of the partial order corresponding to 7. If RAPOS
never executes the following statement
if (schedulable = 0)

add a random element from Enabled(s) to schedulable
in Figure 4, then RAPOS will only execute these canonical
representations (i.e., RAPOS will only sample distinct par-
tial orders.) However, this ideal criteria is never met for real
programs and we do not get a perfect uniform distribution
over the partial orders. In Section 5, we empirically show
that RAPOS samples partial orders more uniformly.

3.5 RAPOS on the Motivating Example

Consider the example in Figure 1. In the first iteration,
RAPOS will assign one of the sets { y=1; },{ if (x==4)
assert(false); },{ y=1; , if (x==4) assert(false); }
to scheduled with probability 0.25, 0.25, and 0.5, respec-
tively. If the set { if (x==4) assert(false); } is as-
signed to scheduled, then in the subsequent iterations the
sets {y = 1; },{y = 2; }, {y = 3; }, {x = 4; } will be assigned
to scheduled with probability 1. Therefore, the first inter-
leaving in the Figure 2 will be sampled with probability 0.25.
Similarly, if the set { y=1; , if (x==4) assert(false); }
is initially assigned to scheduled, then the first or second in-
terleaving in the Figure 2 will get sampled with probability
0.5. If the set { y=1; } is initially assigned to scheduled,
then the last interleaving in Figure 2 will get sampled with
probability 0.25. Note that the third and the fourth inter-
leavings will never be sampled. Therefore, the two partial
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orders of the program will be sampled with probability 0.25
and 0.75, respectively. Therefore, RAPOS will detect the
assertion violation with probability 0.25. This probability is
significantly higher than 0.03125, the probability with which
the simple randomized algorithm will detect the assertion
violation.

4. |IMPLEMENTATION

We have implemented our randomized algorithms for
Java in a prototype tool called CALFUZZER. The tool is
publicly available at http://srl.cs.berkeley.edu/ ksen/
calfuzzer/. The tool provides a general framework for con-
trolling the scheduler of a Java virtual machine and we be-
lieve that this tool can be used to experiment with various
other algorithms that require total control over the Java
thread scheduler. Next we briefly describe the architecture
of CALFUZZER.

CALFUZZER consists of two core components: an instru-
mentor and a scheduler library, called the director. The
instrumentor uses the SOOT compiler framework [30] to in-
strument Java code. Currently, we do not instrument the
standard library that comes with the JDK. This is because
we use the same library to implement the director. As such
CALFUZZER cannot perform a thread switch when a thread
is executing a standard library function. The instrumen-
tor replaces all synchronization operations, such as moni-
torenter, monitorexit, wait, notify, join, yield, sleep,
with function calls provided by the director. The synchro-
nized keyword is replaced from all synchronized methods by
calls to functions defined by the director.

During the execution of an instrumented Java program,
all synchronization operations performed by the program at
runtime are delegated as function calls to the director. The
director implements the function calls to provide all func-
tionalities of a Java thread scheduler that remains the same
across all tools. For example, the director explicitly main-
tains the state of each active thread (e.g. whether a thread
is waiting to acquire a lock) and the state of each active
lock (e.g. which thread holds a lock) and updates the states
whenever a synchronization operation is performed by the
code under test. The director associates a binary semaphore
with every thread. These semaphores are used to control the
execution of individual threads. The director ensures that
at any point during the execution only one thread is exe-
cuting. In order to schedule a thread at every state where
a thread switch can occur, the director implements a func-
tion that returns the next thread to be scheduled. We call
this the scheduler function. The director assumes that the
user of the framework customizes the behavior of the sched-
uler function to implement specific scheduling policies. A
default implementation of the scheduler function based on
the simple randomized algorithm is provided by the director.

CALFUZZER also provides various useful functionalities
such as recording the thread choices made by the scheduler
at every state in an execution. This enables CALFUZZER to
deterministically replay an execution. The happens-before
relation =< is also tracked by the director. The happens-
before relation is also hashed at the end of an execution using
the MD5 hashing algorithm to generate a unique identifier
for each partial order. We use this hash value in our ex-
periments to count the number of times our algorithm has
sampled a distinct partial order.

We have customized the scheduler function to implement

the RAPOS algorithm. The implementation of RAPOS al-
lows thread switch only before a synchronization operation.
In [21], it has been shown that it is sufficient to perform
thread switches before synchronization operations, provided
that the algorithm tracks all data races. This particular re-
striction on thread switch keeps our implementation fast by
avoiding redundant thread switches.

5. EMPIRICAL EVALUATION

5.1 Benchmark Programs

We evaluated our RAPOS algorithm on a variety of mul-
tithreaded programs. The benchmark includes both closed
programs and open libraries which require test drivers to
close them. The closed programs include three benchmark
programs from the Java Grande Benchmark suite (raytracer,
moldyn, and montecarlo) and three multithreaded programs
implementing different patterns of synchronization (philo,
boundedbuffer, and pipeline.) The latter three programs
are taken from the Java PathFinder [32] distribution.

The open programs consist of several synchronized Col-
lection classes provided with Sun’s JDK 1.4.2; such as Vec-
tor, ArrayList, LinkedList, LinkedHashSet, HashSet, and
TreeSet. Most of these classes (except the Vector class) are
not synchronized by default. The java.util package pro-
vides special functions Collections.synchronizedList and
Collections.synchronizedSet to make the above classes
synchronized. In order to close the Collection classes, we
wrote a multithreaded test driver for each such class. A
test driver starts by creating two empty objects of the class.
The test driver also creates and starts a set of threads, where
each thread executes different methods of either of the two
objects concurrently. We created two objects because some
of the methods, such as containsAll, takes as an argument
an object of the same type. For such methods, we call the
method on one object and pass the other object as an argu-
ment. An example of such a test driver for the LinkedList
class is shown below.

public class MTListTest extends Thread {
List all, al2; int c;
public MTListTest(List all, List al2,int c) {
this.all = ali;
this.al2 = al2;
this.c = c;
}
public void run() {
SimpleObject ol = new SimpleObject (MyRandom.nextInt(3));
switch(c){
case 0: all.add(ol); break;
case 1: all.addAll(al2); break;
case 2: all.clear(); break;
case 3: all.contains(ol); break;
case 4: all.containsAll(al2); break;
case 5: all.remove(ol); break;
default: all.removeAll(al2); break;
}
}
public static void main(String args[1){
List all = Collections.synchronizedList(new LinkedList());
List al2 = Collections.synchronizedList(new LinkedList());
(new MTListTest(all,al2,0)).start();
(new MTListTest(al2,all,1)).start();
(new MTListTest(all,al2,2)).start();
(new MTListTest(al2,all,3)).start();
(new MTListTest(all,al2,4)).start();
(new MTListTest(al2,all,5)).start();
(new MTListTest(all,al2,6)).start();



5.2 Experimental Setup

We ran each of the benchmark programs (except moldyn,
raytracer, montecarlo, and philo) 300 times using the sim-
ple randomized algorithm and the RAPOS algorithm. The
programs from the Java Grande Benchmark suite are com-
putationally intensive and take longer time to run; therefore,
we restricted the number of executions of these programs to
100. We executed the philo program 2000 times, because it
is the least computationally intensive program. We seeded
each execution randomly. The random numbers were gen-
erated using a Mersenne Twister pseudo-random generator
class. We picked this class to make sure that our random
numbers are of high quality. We ran the experiments on 2
GHz Core Duo Laptop with 2GB RAM.

We use our experiments two demonstrate the following
three hypotheses:

e The number of partial orders sampled by RAPOS af-
ter a fixed number of executions is significantly greater
than the same number for the simple randomized al-
gorithm.

e The expected number of executions required to find
a defect using RAPOS is significantly less than the
simple randomized algorithm.

e Probability of sampling a partial order by RAPOS is
more uniform than the simple randomized algorithm.
This implies that defects, such as deadlocks, data-
races, and assertion violations, that are invariant with
respect to all linearizations of a partial order are sam-
pled more uniformly.

5.3 Results

Let us fix the following terminology. An experiment is
equivalent to running a benchmark program n times using
either the simple randomized algorithm or the RAPOS al-
gorithm. In each experiment, we compute the partial order
of each program execution and cluster the executions into
distinct partial orders such that each cluster contains only
those executions that have the same partial order. For each
cluster C, we compute |C|/n (where |C| is the number of
executions present in the cluster C') and use it to denote
the probability of sampling the partial order corresponding
to the cluster C. In each experiment, we also compute the
number of distinct clusters or partial orders.

Table 1 shows the value of n (see column 4) for each exper-
iment and the number of distinct partial orders encountered
in each experiment (see column 5 for the simple randomized
algorithm and column 6 for the RAPOS algorithm.) The
higher the number of partial orders, the better the algo-
rithm. Column 2 lists the source lines of code of each pro-
gram (including comments and blank lines.) For the classes
in java.util, we do not report SLOC, because these classes
have a complex inheritance structure which prevented us
from counting the actual SLOC. The total number SLOC of
the classes inside java.util is around 25K.

Table 1 illustrates that the number of distinct partial or-
ders sampled by RAPOS is several (i.e. between 1.38-18.75)
times greater than the number of partial orders sampled by
the simple randomized algorithm. In case of montecarlo,
a program from the Java Grande Benchmark suite, using
RAPOS, we obtained 75 distinct partial orders in 100 exe-
cutions, whereas, the simple randomized algorithm resulted

in a total of 4 distinct partial orders. This implies that
certain partial orders in the case of montecarlo have signifi-
cantly more linearizations compared to the others; therefore,
our simple randomized algorithm ended up sampling more
executions from the same partial order. In some programs,
such as philo and boundedbuffer, the partial orders are more
uniformly distributed; therefore, RAPOS performed a little
better than the simple randomized algorithm on these pro-
grams. In summary, we conclude from the results in Table 1
that on the benchmark programs, the number of partial or-
ders sampled by RAPOS after a fixed number of executions
is greater than the same number for the simple randomized
algorithm.

In Figure 6, we compare the probability of sampling dis-
tinct partial orders in each experiment. Each horizontal bar
in the figure plots the relative probability of sampling a par-
tial order. Specifically, each vertical segment in a horizontal
bar represents a distinct partial order and the area of the
segment gives the probability of sampling the partial order.
The bars on the left column plot data for the simple ran-
domized algorithm and the bars on the right column plot
data for the RAPOS algorithm.

The plots in Figure 6 show that the probability of sam-

pling a partial order by RAPOS is more uniform than the
simple randomized algorithm. For example, in the case of
HashSet, the probability of sampling distinct partial orders
using the simple randomized algorithm varies from 0.003 to
0.51. In contrast, for the same program, the probability
of sampling distinct partial orders using the RAPOS varies
from 0.003 to 0.017, which is more uniform.
Defect Detection. Three programs, namely Vector,
Arraylist, and LinkedList, in our set of benchmarks
can throw ConcurrentModificationException exception if
their method x.containsA11(y) is called concurrently with
a method that modifies the object y. This is because these
containsAll methods are implemented by the superclass
AbstractCollection and the implementation uses iterator
in a thread-unsafe way. However, the exception is thrown
under very specific thread schedules. In order to com-
pare the defect detection capabilities of the simple random-
ized algorithm and the RAPOS algorithm, we computed
the expected number of executions required to expose the
uncaught ConcurrentModificationException in the three
programs. The expected numbers are computed by taking
an average over 25 experiments.

Figure 7 shows the summary of the results of our defect
detection experiments. The results demonstrate that the
RAPOS algorithm catches the ConcurrentModificationEx-
ception faster than the simple randomized algorithm. For
example, for the Vector class, RAPOS detects the excep-
tion in 129 executions on an average, whereas, the simple
randomized algorithm detects the exception in 615 execu-
tions on an average. These results support our hypothesis
that RAPOS finds defects faster than the simple randomized
algorithm.

5.4 Threats to Validity

A key external threat to validity is that we do not know
if our selected benchmarks are representative of the mul-
tithreaded Java programs found in practice. We tried to
minimize this threat by picking programs from various do-
mains such as data structures, high-performance computing,
and examples of various synchronization mechanisms. We
have only compared RAPOS with the simple randomized
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Figure 6: Relative Distribution of Partial Orders Sampled by the Simple Randomized Algorithm and the
RAPOS algorithm



Program | SLOC [ # of Threads | Total # of Executions | # of distinct Partial Orders | Column 6/Column 5
Simple Algorithm | RAPOS
ArrayList - 7 300 71 247 3.47
boundedbuffer 141 4 300 118 171 1.45
HashSet - 7 300 42 230 5.48
LinkedHashSet - 7 300 48 230 4.79
LinkedList - 7 300 58 259 4.47
moldyn 1291 11 100 19 48 2.53
montecarlo 3557 11 100 4 75 18.75
philo 91 3 2000 1124 1552 1.38
pipeline 119 8 300 38 156 4.11
raytracer 1859 11 100 22 44 2.00
TreeSet - 7 300 78 240 3.08
Vector - 7 300 105 256 2.44

Table 1: Number of Partial Orders Sampled after a Fixed Number of Executions

2500

Simple ——1
RDPOR

2000 1

1500 - 1

1000 - 1

500 [

o 2% ::1

Vector ArrayList LinkedList

Figure 7: Expected Number of Executions Required
to Detect a Defect

algorithm. This could be seen as another threat to validity.
However, we believe that our simple randomized algorithm,
being explicit in controlling thread schedules, will outper-
form existing random testing algorithms for concurrent pro-
grams [10,29].

Internal threats to validity include our implementation
bias that could affect our results. Defects in our tool can
amplify such biases. To minimize this threat, we have ex-
tensively tested our tool on a number of small multithreaded
programs. Moreover, in our simple randomized algorithm,
we have made sure that we switch threads only at the syn-
chronization points.

Our conclusion that RAPOS can find bugs more quickly
than the simple randomized algorithm might not hold if bugs
exist in partial orders that have comparatively large num-
ber of linearizations. In such cases, the simple randomized
algorithm will be able catch those bugs faster than RAPOS.
However, our limited experiments show that concurrency re-
lated bugs often exist in partial orders having comparatively
smaller number of linearizations. This also matches our in-
tuition because hard to find concurrency bugs often manifest
under very specific and corner-case thread schedules.

6. RELATED WORK

Random testing [1,4,5,12,18,19,23,24] (or fuzz testing)
is widely used to test sequential programs. Random testing

has several advantages: it is fast and it can find common
bugs quickly [12]. Although random testing has been quite
successful in finding bugs, the problem with such random
testing is twofold: first, many sets of values may lead to
the same observable behavior and are thus redundant, and
second, the probability of selecting particular inputs that
cause buggy behavior may be astronomically small [22].

In concurrent programs, if we fix the data inputs, then
random testing can be used to pick a random thread for
scheduling at every synchronization point. Since the number
of threads executing concurrently at any time is often small,
the domain of random choices is small compared to sequen-
tial programs with inputs. As such random testing performs
better for concurrent programs. However, the challenge lies
in controlling the scheduler.

Recently, a couple of random testing techniques [10,29] for
concurrent programs have been proposed. These techniques
randomly seed a Java program under test with the sleep(),
the yield(), and the priority () primitives at shared mem-
ory accesses and synchronization events. As a result the
scheduling gets perturbed randomly at runtime. Although
these techniques have successfully detected bugs in many
programs, they have two limitations. These techniques are
not systematic as the primitives sleep(), yield(), pri-
ority() can only advise the scheduler to make a thread
switch, but cannot force a thread switch. Second, repro-
ducibility cannot be guaranteed in such systems [29] unless
there is builtin support for capture-and-replay [10]. The
simple randomized algorithm given in Section 3.2 removes
these limitations by explicitly controlling the scheduler.

Randomized algorithms for model checking have also
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This technique uses the RandomOrderScheduler of
JPF [32].

Several systematic and exhaustive techniques [2,3,26,28]
for testing concurrent and parallel programs have been de-
veloped recently. These techniques exhaustively explore
all interleavings of a concurrent program by systematically
switching threads at synchronization points.
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7.

CONCLUSION

Random testing (or fuzz testing) is a simple, inexpensive,
yet effective technique for finding bugs in programs. So far,
a couple of techniques for random testing of concurrent pro-
grams has been proposed. Those techniques try to partially
control the underlying scheduler in a random manner. We
propose a systematic algorithm for random testing concur-
rent programs by extending ideas from the model checking
literature. We empirically demonstrate the effectiveness of
our algorithm.

Acknowledgements

We would like to thank Benjamin Hindman and Pallavi Joshi
for providing valuable comments on a draft of this paper.
This work is supported in part by the NSF Grant CNS-
0720906.

8.
(1]

(2]

(3]

(4]

(5]

[6]

[7]

(8]

[9]

(10]

(11]

(12]

13]

(14]

(15]

REFERENCES

D. Bird and C. Mufioz. Automatic Generation of Random
Self-Checking Test Cases. IBM Systems Journal,
22(3):229-245, 1983.
D. Bruening. Systematic testing of multithreaded Java
programs. Master’s thesis, MIT, 1999.
R. H. Carver and Y. Lei. A general model for reachability
testing of concurrent programs. In 6th International
Conference on Formal Engineering Methods (ICFEM’04),
volume 3308 of LNCS, pages 76-98, 2004.
K. Claessen and J. Hughes. Quickcheck: A lightweight tool
for random testing of Haskell programs. In ICFP 00, pages
268-279. ACM, 2000.
C. Csallner and Y. Smaragdakis. JCrasher: an automatic
robustness tester for Java. Software: Practice and
FExperience, 34:1025-1050, 2004.
M. d’Amorim, C. Pacheco, T. Xie, D. Marinov, and M. D.
Ernst. An empirical comparison of automated generation
and classification techniques for object-oriented unit
testing. In ASE 06: Automated Software Engineering,
pages 59-68. IEEE, 2006.
M. B. Dwyer, S. Elbaum, S. Person, and R. Purandare.

In ICSE ’07:
Proceedings of the 29th International Conference on
Software Engineering, pages 3-12. IEEE, 2007.
M. B. Dwyer, J. Hatcliff, Robby, and V. P. Ranganath.
Exploiting object escape and locking information in
partial-order reductions for concurrent object-oriented
programs. Form. Methods Syst. Des., 25(2-3):199-240,
2004.
J. E. M. Clarke, O. Grumberg, and D. A. Peled. Model
checking. MIT Press, 1999.
O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, , and S. Ur.
Multithreaded Java program test generation. IBM Systems
Journal, 41(1):111-125, 2002.
C. Flanagan and P. Godefroid. Dynamic partial-order
reduction for model checking software. In Proc. of the 32nd
Symposium on Principles of Programming Languages
(POPL’05), pages 110-121, 2005.
J. E. Forrester and B. P. Miller. An Empirical Study of the
Robustness of Windows NT Applications Using Random
Testing. In Proceedings of the 4th USENIX Windows
System Symposium, 2000.
P. Godefroid. Partial-Order Methods for the Verification of
Concurrent Systems — An Approach to the State-Explosion
Problem, volume 1032 of LNCS. Springer-Verlag, 1996.
P. Godefroid. Model checking for programming languages
using verisoft. In 24th Symposium on Principles of
Programming Languages, pages 174-186, 1997.
R. Grosu and S. A. Smolka. Monte'carlormodelichecking! In
11th International Conference Tools and Algorithms for

[16]

(17)
(18]

(19]

20]

(21]

(22]

23]

[24]

[25]

[26]

27]

28]

[29]

(30]

(31]

32]

(33]

the Construction and Analysis of Systems (TACAS 2005),
volume 3440 of LNC'S, pages 271-286, 2005.
K. Havelund and T. Pressburger. Model Checking Java
Programs using Java PathFinder. Int. Journal on Software
Tools for Technology Transfer, 2(4):366-381, 2000.
G. Holzmann. The Spin model checker. IEEE Transactions
on Software Engineering, 23(5):279-295, May 1997.
Y. Lei and J. H. Andrews. Minimization of randomized unit
test cases. In ISSRE 05, pages 267-276, 2005.
R. Majumdar and K. Sen. Hybrid concolic testing. In ICSE
07: International Conference on Software Engineering.
ACM, 2007.
A. W. Mazurkiewicz. Trace theory. In Petri Nets: Central
Models and Their Properties, Advances in Petri Nets 1986,
volume 255 of LNCS, pages 279-324. Springer, 1986.
M. Musuvathi and S. Qadeer. Iterative context bounding
for systematic testing of multithreaded programs. In ACM
Symposium on Programming Language Design and
Implementation (PLDI’07), 2007. (To Appear).
J. Offut and J. Hayes. A Semantic Model of Program
Faults. In ISSTA 96, pages 195-200. ACM, 1996.
C. Pacheco and M. D. Ernst. Eclat: Automatic generation
and classification of test inputs. In ECOOP 05: European
Conference Object-Oriented Programming, LNCS 3586,
pages 504-527, 2005.
C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball.
Feedback-directed random test generation. In ICSE ’07:
Proceedings of the 29th International Conference on
Software Engineering. IEEE, 2007.
D. Peled. All from one, one for all: on model checking using
representatives. In 5th Conference on Computer Aided
Verification, pages 409—-423, 1993.
K. Sen and G. Agha. A race-detection and flipping
algorithm for automated testing of multi-threaded
programs. In Haifa verification conference 2006 (HVC’06),
Lecture Notes in Computer Science. Springer, 2006.
K. Sen, M. Viswanathan, and G. Agha. Statisticalimodel

. In 16th
International Conference on Computer Aided Verification
(CAV’04), volume 3114 of LNCS, pages 202-215, 2004.
S. F. Siegel, A. Mironova, G. S. Avrunin, and L. A. Clarke.

In ISSTA ’06: Proceedings of
the 2006 international symposium on Software testing and
analysis, pages 157-168. ACM Press, 2006.

S. D. Stoller. Testing concurrent Java programs using
randomized scheduling. In Workshop on Runtime
Verification (RV’02), volume 70 of ENTCS, 2002.

R. Vallee-Rai, L. Hendren, V. Sundaresan, P. Lam,

E. Gagnon, and P. Co. Soot - a Java optimization
framework. In CASCON 1999, pages 125-135, 1999.

A. Valmari. Stubborn sets for reduced state space
generation. In 10th Conference on Applications and Theory
of Petri Nets, pages 491-515, 1991.

W. Visser, K. Havelund, G. Brat, and S. Park. Model
checking programs. In Proceedings of the 15th International
Conference on Automated Software Engineering. IEEE
Computer Science Press, Sept. 2000.

H. L. S. Younes and R. G. Simmons. Probabilistic

verification of discrete event systems using acceptance
gampling! In 14th International Conference on Computer
Aided Verification (CAV’02), volume 2404 of LNCS, pages
223-235. Springer, 2002.


福昕
高亮


福昕
高亮


福昕
高亮


福昕
高亮


福昕
高亮


福昕
高亮





