
UNIVERSITE DE LIEGE

Facult�e des Sciences Appliqu�ees

Partial-Order Methods

for the Veri�cation of Concurrent Systems

An Approach to the State-Explosion Problem

Th�ese pr�esent�ee par

Patrice Godefroid

en vue de l'obtention du grade

de Docteur en Sciences Appliqu�ees

Ann�ee Acad�emique 1994{1995

Abstract

State-space exploration techniques are increasingly being used for debugging and prov-

ing correct �nite-state concurrent reactive systems. The reason for this success is mainly

the simplicity of these techniques. Indeed, they are easy to understand, easy to im-

plement and, last but not least, easy to use: they are fully automatic. Moreover, the

range of properties that they can verify has been substantially broadened thanks to the

development of model-checking methods for various temporal logics.

The main limit of state-space exploration veri�cation techniques is the often exces-

sive size of the state space due, among other causes, to the modeling of concurrency

by interleaving. However, exploring all interleavings of concurrent events is not a priori

necessary for veri�cation: interleavings corresponding to the same concurrent execution

contain related information. One can thus hope to be able to verify properties of a concur-

rent system without exploring all interleavings of its concurrent executions. This thesis

presents a collection of methods, called partial-order methods, that make this possible.

The intuition behind partial-order methods is that concurrent executions are really

partial orders and that concurrent events should be left unordered since the order of their

occurrence is irrelevant. However, rather than choosing to work with direct representa-

tions of partial orders, the methods we develop keep to an interleaving representation

of partial orders, but attempt to limit the expansion of each partial-order computation

to just one of its interleavings, instead of all of them. More precisely, given a prop-

erty, partial-order methods explore only a reduced part of the global state-space that is

su�cient for checking the given property. In the thesis, three types of properties are con-

sidered: absence of deadlocks, safety properties, and properties expressed by linear-time

temporal-logic formulas.

The techniques and algorithms we describe have been implemented in an add-on pack-

age for the protocol veri�cation system SPIN. This Partial-Order Package has been tested

on numerous examples, including several industrial-size communication protocols. When

the coupling between the processes is very tight, partial-order methods yield no reduc-

tion, and the partial-order search becomes equivalent to a classical exhaustive search.

When the coupling between the processes is very loose, the reduction is very impressive:

in some cases, the number of states that need to be visited for veri�cation can be reduced

from exponential to polynomial in the size of the system description (code). For most

realistic examples, partial-order methods provide a signi�cant reduction of the memory

and time requirements needed to verify protocols.

Acknowledgments

This work would not have been possible without the technical and moral support of

my thesis advisor, Pierre Wolper. He introduced me to the �eld of veri�cation, and

opened doors for me in the research community. His enthusiastic supervision has been a

continuous source of encouragements to me. I consider myself fortunate that I had access

to his valuable guidance.

I am grateful to the other members of my reading committee, Professors Raymond

Devillers, Pascal Gribomont, Amir Pnueli, Daniel Ribbens, Joseph Sifakis, and Antti

Valmari, for their careful review of this work.

It has been a great pleasure for me to work closely with Didier Pirottin during these

last three years. I am thankful to Didier for numerous insightful discussions, and for his

help in implementing algorithms presented in this thesis.

I wish to thank Gerard Holzmann for freely sharing his considerable experience in

validating communication protocols. I learned how to build veri�cation tools mainly

from his work and from discussions with him. He provided me with many challenging

examples of communication protocols, which have been (and still are) a very good source

of inspiration to me. He also made possible an exciting visit to AT&T Bell Laboratories

during the summer of 1992.

I have had the opportunity to discuss my research with many scientists at various

conferences and seminars. I thank all of them for being helpful and encouraging. I am

particularly grateful to Mark Drummond, Pascal Gribomont, Froduald Kabanza, Doron

Peled, and Antti Valmari for very fruitful discussions. Special thanks also go to Bernard

Boigelot, Philippe Lejoly, and Luc Moreau for reading and commenting on an early

version of this thesis.

This work was �nancially supported by the European Community ESPRIT projects

SPEC (3096) and REACT (6021), and by the Belgian Incentive Program \Information

Technology { Computer Science of the Future", initiated by the Belgian State { Prime

Minister's Service { Science Policy O�ce, which I gratefully acknowledge.

Last but not least, I would like to take this opportunity to thank my parents for their

constant moral support, and Anne-Christine for her love, for sharing ups and downs, and

for reminding me, when necessary, that computer science is not the most important thing

in life.

Contents

1 Introduction 11

1.1 Background and Motivation : 11

1.2 Partial-Order Methods : 13

1.3 Related Work : 14

1.4 Organization of the Thesis : 16

2 Concurrent Systems and Semantics 19

2.1 Representing Concurrent Systems : 19

2.2 Semantics : 22

2.3 Example : 23

2.4 Discussion : 24

3 Using Partial Orders to Tackle State Explosion 27

3.1 Independent Transitions : 27

3.2 Traces : 29

3.3 Selective Search : 31

3.4 Detecting Independency in Concurrent Systems : : : : : : : : : : : : : : 33

3.4.1 Towards More Independency : 33

3.4.2 Re�ning Dependencies between Operations : : : : : : : : : : : : : 35

3.4.3 Summary : 39

4 Persistent Sets 41

4.1 De�nition : 41

5

6 CONTENTS

4.2 Computing Persistent Sets : 43

4.3 Algorithm 1 (Conicting Transitions) : 44

4.4 Algorithm 2 (Overman's Algorithm) : 47

4.5 Algorithm 3 (Stubborn Sets) : 51

4.5.1 Basic Idea : 51

4.5.2 Algorithm : 53

4.6 Comparison : 56

4.7 Algorithm 4 (Conditional Stubborn Sets) : : : : : : : : : : : : : : : : : : 60

4.7.1 Basic Idea : 60

4.7.2 Algorithm : 62

4.8 Discussion : 67

5 Sleep Sets 71

5.1 Basic Idea : 71

5.2 Algorithm : 73

5.3 Properties of Sleep Sets : 76

5.3.1 On Combining Sleep Sets with Persistent Sets : : : : : : : : : : : 76

5.3.2 Reducing State Matchings : 78

6 Veri�cation of Safety Properties 81

6.1 Beyond Deadlock Detection : 81

6.2 Algorithm : 83

6.3 Trace Automata : 86

6.4 Properties of Trace Automata : 92

6.5 Comparison with Other Work : 94

7 Model Checking 99

7.1 Beyond Safety Properties : 99

7.2 Automata and Model Checking : 100

7.3 Using Partial Orders for Model Checking : : : : : : : : : : : : : : : : : : 102

7.4 Model Checking with Fairness Assumptions : : : : : : : : : : : : : : : : 105

CONTENTS 7

8 Experiments 109

8.1 How Can Partial-Order Methods Be Evaluated? : : : : : : : : : : : : : : 109

8.2 A Partial-Order Package for SPIN : 111

8.3 Evaluation : 112

8.4 State-Space Caching : 116

8.5 Conclusion : 120

9 Conclusions 123

9.1 Summary : 123

9.2 Future Work : 125

Bibliography 125

8 CONTENTS

List of Figures

2.1 Classical search : 23

2.2 Global state space for the two-dining-philosophers system : : : : : : : : : 25

3.1 Partial order of transition occurrences : 30

4.1 Persistent-set selective search : 42

4.2 Algorithm 1 : 44

4.3 Algorithm 2 : 48

4.4 Algorithm 3 : 54

4.5 Algorithm 4 : 64

5.1 Global state space for the system of Example 5.1 : : : : : : : : : : : : : 72

5.2 Selective search using persistent sets and sleep sets : : : : : : : : : : : : 73

5.3 Reduced state space with sleep sets : 78

6.1 Reduced state space for the system of Example 6.1 : : : : : : : : : : : : 82

6.2 Selective search using persistent sets, sleep sets, and proviso : : : : : : : 84

6.3 Reduced state space with proviso for the system of Example 6.1 : : : : : 86

8.1 Reduction due to partial-order methods for dining philosophers : : : : : 110

8.2 Reduced state space for the producer-consumer problem : : : : : : : : : 111

8.3 Performances of state-space caching for MULOG3 : : : : : : : : : : : : : 118

8.4 Typical protocol example : 121

9

10 LIST OF FIGURES

Chapter 1

Introduction

1.1 Background and Motivation

Concurrent systems are systems composed of elements that can operate concurrently

and communicate with each other. Each component can be viewed as a reactive system,

i.e., a system that continuously interacts with its environment. The environment of one

component is formed by the other components of the concurrent system, which is hence

assumed to be closed. (This implies that, in case of a single \open" reactive system, a

model of the environment in which this system operates has to be represented by other

component(s) of the concurrent system, in order to close the system.) The behavior

of a reactive system is de�ned by its ongoing behavior over time. This is quite unlike

the traditional \transformational" view of programs where the functional relationship

between the input state and the output state de�nes the meaning of a program. In-

deed, reactive systems are not dedicated to the transformation of data (like traditional

programs), but rather to the control of processes. There are many examples of such con-

current reactive systems: computer networks, asynchronous circuits, operating systems,

and various forms of plant-controller systems, such as telephone switches, ight-control

systems, manufacturing-plant controllers, etc.

Concurrent reactive systems are notably di�cult to design. Indeed, such systems

can usually exhibit an extremely large number of di�erent behaviors. This is due to

the combinatorial explosion resulting from all possible interactions between the di�erent

concurrent components of the system, and the many possible race conditions that may

arise between them. This situation makes the development of concurrent reactive systems

an extremely delicate task. Testing is also of very limited help since test coverage is bound

to be only a minute fraction of the possible behaviors of the system. This situation

is all the more alarming since reactive systems are increasingly being used to control

11

12 CHAPTER 1. INTRODUCTION

safety-critical devices (e.g., ight-control systems) or economically-crucial systems (e.g.,

telephone switches).

Veri�cation provides the mean to ensure the correctness of the design of concurrent

reactive systems. Veri�cation means checking that a system description conforms to its

expected properties. These properties can range from several forms of consistency to

complex correctness requirements speci�ed, for instance, in a logical language. Veri�ca-

tion is thus the tool that enables the designer to be con�dent that the formal description

of the system he/she has obtained does indeed satisfy the problem requirements.

Four elements are necessary to de�ne a veri�cation framework:

� a representation of the system,

� a representation of the property to be checked,

� a conformation criterion according to which the representations of the system and

of the property are compared, and

� a method (preferably an automatic algorithm) for performing this comparison.

Note that \verify" means to (mathematically) prove that a system meets its correctness

requirements. We speci�cally do not mean testing (unless it is exhaustive) or any other

method that ensures that the system is \probably" correct. In order to prove that a

system conforms to a property, all possible behaviors of the system have to be checked

to determine if all of them are compatible with the given property.

State-space exploration is one of the most successful strategies for analyzing and veri-

fying �nite-state concurrent reactive systems. It consists in exploring a global state graph

representing the combined behavior of all concurrent components in the system. This

is done by recursively exploring all successor states of all states encountered during the

exploration, starting from a given initial state, by executing all enabled transitions in

each state. The state graph that is explored is called the state space of the system. If

the state space is �nite, it can be explored completely.

Many di�erent types of properties of a system can be checked by exploring its state

space: deadlocks, dead code, violations of user-speci�ed assertions, etc. Moreover, the

range of properties that state-space exploration techniques can verify has been substan-

tially broadened during the last decade thanks to the development of model-checking

methods for various temporal logics (e.g., [CES86, LP85, QS81, VW86]).

Veri�cation by state-space exploration has been studied by many researchers (cf. [Liu89,

Rud87]). The simplicity of the strategy lends itself to easy, and thus e�cient, implemen-

tations. Moreover, veri�cation by state-space exploration is fully automatic: no inter-

vention of the designer is required. This is a crucial feature for a veri�cation technique

1.2. PARTIAL-ORDER METHODS 13

to be used in industry. Indeed, systems are often (read always) developed under time

pressure, and veri�cation steps that would be too much time consuming for the designer

are therefore not realistic.

All these reasons explain why many present veri�cation tools follow this paradigm.

Examples of such tools are CAESAR [FGM

+

92], COSPAN [HK90], MURPHI [DDHY92],

SPIN [Hol91], among others. These tools di�er by the formal description languages they

use for representing systems and properties, and by the conformation criterion according

to which these representations are compared. But all of them are based on state-space

exploration algorithms, in one form or another, for performing the veri�cation itself.

As tools are being developed, the e�ectiveness of state-space exploration techniques

for debugging and proving correct concurrent reactive systems is increasingly becom-

ing established. The number of \success stories" about applying these techniques to

industrial-size systems keeps growing (e.g., see [Rud92]). Several very complex exam-

ples of concurrent systems have been analyzed and veri�ed using state-space exploration

techniques. In many cases, these techniques were able to reveal quite subtle design errors.

The main limit of state-space exploration veri�cation techniques is the often excessive

size of the state space. Owing to simple combinatorics, this size can be exponential in the

size of the description of the system being analyzed. This exponential growth is known

as the state-explosion problem.

The state-explosion problem is due, among other causes, to the modeling of concur-

rency by interleaving, or, more accurately, to the exploration of all possible interleavings

of concurrent events. For instance, the execution of n concurrent events is investigated

by exploring all n! interleavings of these events.

In this thesis, we develop an original approach for applying veri�cation by state-space

exploration without incurring most of the cost of modeling concurrency by interleaving.

1.2 Partial-Order Methods

We show that exploring all interleavings of concurrent events is not a priori necessary for

veri�cation: interleavings corresponding to the same concurrent execution contain related

information. One can thus hope to be able to verify properties of a concurrent system

without exploring all interleavings of its concurrent executions. This thesis presents a

collection of methods, called partial-order methods, that make this possible.

The intuition behind partial-order methods is that concurrent executions are really

partial orders and that expanding such a partial order into the set of all its interleav-

ings is an ine�cient way of analyzing concurrent executions. Instead, concurrent events

14 CHAPTER 1. INTRODUCTION

should be left unordered since the order of their occurrence is irrelevant. Hence the name

\partial-order methods". However, rather than choosing to work with direct representa-

tions of partial orders, the methods we develop keep to an interleaving representation of

partial orders, but attempt to limit the expansion of each partial-order computation to

just one of its interleavings, instead of all of them.

Precisely, given a property, partial-order methods explore only a reduced part of the

global state space that is provably su�cient to check the given property. The di�erence

between the reduced and the global state spaces is that all interleavings of concurrent

events are not systematically represented in the reduced one. We will see later that which

interleavings are required to be preserved may depend on the property to be checked.

The speci�cation of the algorithms we develop is that they have to verify a given prop-

erty of a �nite-state concurrent system while exploring as small a fraction as possible of

its state space. In this thesis, we present algorithms for exploring reduced state spaces for

the veri�cation of three types of properties: absence of deadlocks, safety properties, and

linear-time temporal-logic formulas. These types of properties are considered separately

because checking more elaborate properties requires the preservation of more informa-

tion in the reduced state space, i.e, the exploration of more states and transitions. It

is therefore worth developing speci�c algorithms for the veri�cation of standard types

of properties, and then using the appropriate algorithm for each property in order to

maximize the amount of reduction that can be obtained in practice.

It must be noted that, though the partial-order methods we develop are inspired by

partial-order semantics (especially by Mazurkiewicz's traces [Maz86]), these methods do

not comply with any speci�c partial-order semantics. Indeed, the only requirement is that

the modi�ed concurrent composition computes enough interleavings to make checking

the desired property possible. Not all concurrent executions need be represented if the

veri�cation does not require it and, conversely, a given concurrent execution can be

represented by several redundant interleavings. The prime concern is to check the desired

property as e�ciently as possible.

1.3 Related Work

It has been recognized for some time that concurrency and nondeterminism are not

the same thing. This observation has inspired a fairly large body of work on so-called

\partial-order models" of concurrency (cf. [Lam78, Maz86, Pra86, Win86]). Work in

this area studies various semantics for concurrency, and compares their properties. In

this thesis, we take a more pragmatic point of view towards partial-order models: our

goal is to develop veri�cation methods for concurrent �nite-state systems that avoid the

1.3. RELATED WORK 15

part of the combinatorial explosion due to the modeling of concurrency by interleaving.

Our approach yields results identical to those of methods based on classical interleav-

ing semantics, it just avoids most of the associated combinatorial explosion. It is also

quite orthogonal to the veri�cation of properties expressed in partial-order temporal log-

ics (cf. [PW84, KP86, KP87, Pen88, Pen90]). Indeed, these logics are designed to be

semantically more expressive. We are \only" more e�cient.

Several approximate methods based on simple heuristics have been proposed to restrict

the number of interleavings that are explored [GH85, Wes86, Hol87]. These heuristics

carry with them the risk of incomplete veri�cation results, i.e., they can detect errors but

cannot prove the absence of errors. In contrast, the partial-order methods we develop

in this thesis reduce the number of interleavings that must be inspected in a completely

reliable manner, provably without the risk of any incompleteness in the veri�cation re-

sults.

The closest work to the one presented here is certainly that of Valmari [Val91], which

extends previous work done by Overman [Ove81]. Indeed, Valmari has developed an ap-

proach (based on \stubborn sets") for generating reduced state spaces that can be used

for checking properties of concurrent systems. Despite this general similarity with our

approach, there are many di�erences that distinguish Valmari's work from ours. These

important technical di�erences will be pointed out during the presentation of this thesis.

Note, as a �rst notable di�erence, that Valmari does not rely on any partial-order seman-

tics to justify and prove the correctness of his algorithms. This makes the presentation

of the stubborn set method (see [Val91]) less modular and, we believe, less intuitive than

the style of presentation using partial-order semantics (precisely Mazurkiewicz's traces)

adopted in this thesis. This is of course a subjective point of view. However, this issue

has implications that go beyond a simple question of presentation. Indeed, using partial

orders and a notion of (in)dependency as done in this thesis, we were able, among other

things, to generalize and improve the stubborn set method, as will be presented in Chap-

ter 4. This is a more solid argument in favor of our approach to the problem. In any

case, our partial-order approach indubitably brings a new perspective on the stubborn

set theory.

Strategies for proving properties of concurrent systems without considering all possible

interleavings of their concurrent actions have been proposed in [AFdR80, EF82, Pnu85,

SdR89, KP92b, JZ93]. These proof methods are applied in the context of an inference

system, in which the correctness of a system is established by proving assertions about

its components. This approach to veri�cation has the advantage of not being restricted

to �nite-state systems. On the other hand, it requires proofs that are manual. Even

with the help of a theorem prover, carrying out proofs with a theorem prover is far from

fully automatic since most steps of the proof require inventive interventions from the

16 CHAPTER 1. INTRODUCTION

user. In contrast, the focus of this thesis is purely on algorithmic issues, since we discuss

fully-automatic state-space exploration techniques.

The idea that the cost of modeling concurrency by interleaving can be avoided in �nite-

state veri�cation also appeared in [JK90, PL90, McM92, Esp92]. In [JK90], the problem

of �nding an \optimal" reduced state space with just enough transitions and states to

preserve Mazurkiewicz's trace semantics is addressed. In [PL90], a method that relies

on a pomset grammar description of the system is introduced. Also, in [McM92, Esp92],

one �nds a veri�cation method that works by unfolding a Petri net description of a

concurrent system into a �nite acyclic structure. These methods are quite di�erent from

those developed in this thesis. Note that none of these other methods have been widely

experimented on a large set of realistic examples, as it has been the case for the methods

presented here (see Chapter 8).

The key contributions of the material presented in this thesis already appeared in

a series of papers [God90, GW91a, GW91b, GHP92, HGP92, GP93, GW93, WG93,

GW94]. The thesis presents most of the results published in these papers in a uni�ed

framework, and relates them with each other. The thesis also extends several of these

results. References to preliminary published versions are included in the presentation of

the following Chapters.

1.4 Organization of the Thesis

In Chapter 2, we introduce a simple model for representing concurrent systems, and

de�ne its semantics. Then, we motivate the choice of this model, and compare it to other

existing models and formalisms.

In Chapter 3, we show that exploring all possible interleavings of all possible \inde-

pendent" transitions of a system is not necessary for veri�cation. We precisely de�ne the

notion of independency, and discuss how to detect independency between transitions in

concurrent systems. Interleavings of independent transitions are related by the notion

of Mazurkiewicz's trace. The algorithms developed in this thesis take advantage of the

independency between transitions to avoid exploring all their interleavings, and thus to

avoid exploring parts of the state space. Such a partial exploration of the state space is

called a selective search.

In Chapter 4, a �rst technique for determining the transitions that need to be explored

in a selective search, called the persistent set technique, is presented. This technique actu-

ally corresponds to a whole family of existing algorithms, which are presented, discussed,

and compared with each other. Then, a new algorithm that generalizes and improves the

previous ones in a sense that will be given later is described.

1.4. ORGANIZATION OF THE THESIS 17

In Chapter 5, another technique for selecting transitions to be explored in a selective

search, called the sleep set technique, is introduced. Sleep sets are shown to be compatible

with persistent sets, and their properties are studied.

In Chapter 6, the persistent set and sleep set techniques, used for deadlock detection

in Chapters 4 and 5, are extended in order to make possible the veri�cation of arbi-

trary safety properties. Trace automata are introduced to justify the correctness of this

extension.

In Chapter 7, we address the model-checking problem for linear-time temporal-logic.

We point out the key problems underlying the veri�cation of liveness properties using

partial-order methods, and compare the solutions that have been proposed for solving

these problems. We also show how the proposed techniques complement each other.

In Chapter 8, results of experiments on various examples using the algorithms that

have been developed in this thesis are presented. These algorithms have been imple-

mented in an add-on package for the protocol veri�cation system SPIN. This partial-order

package is briey described, and instructions for obtaining a copy of it by anonymous ftp

are given. The complementarity between partial-order methods and state-space caching

is also pointed out. The practical contribution of partial-order methods is �nally dis-

cussed.

In Chapter 9, a summary of our contributions is presented together with some areas

for further study.

18 CHAPTER 1. INTRODUCTION

Chapter 2

Concurrent Systems and Semantics

In this Chapter, we introduce a simple representation for modeling concurrent systems,

and de�ne its semantics. Then, we motivate the choice of this model, and compare it to

other existing models and formalisms.

2.1 Representing Concurrent Systems

Concurrent systems are composed of di�erent components, called processes, that can act

in parallel and interact with each other. In this thesis, we will assume that processes

are �nite-state, i.e., that the number of states that they can reach is �nite. We will also

assume that processes can synchronize by executing together joint transitions (rendez-

vous), and communicate by performing operations on shared objects. Formally, our

model for representing concurrent systems is the following.

A labeled formal concurrent system (LFCS), or system for short, is a tuple (P;O;T ; �; s

0

),

where

� P is a �nite set of n processes,

� O is a �nite set of m objects,

� T is a �nite set of transitions,

� � : T 7! � is a labeling function that associates a label, also called an action, taken

from an alphabet � with each transition of T , and

� s

0

is the initial state of the system.

19

福昕
高亮

福昕
高亮

20 CHAPTER 2. CONCURRENT SYSTEMS AND SEMANTICS

Each process P

i

2 P is a �nite nonempty set of local states, or control points. Processes

are pairwise disjoint.

Processes can access a �nite set of objects. An object O is characterized by a pair

(V;OP), where V is the set of all possible values for the object (its domain), and OP

is the set of operations that can be performed on the object. Each operation op

i

2 OP

is a (possibly partial) function IN

i

� V ! OUT

i

� V , where IN

i

and OUT

i

repre-

sent respectively the set of possible inputs and outputs of the operation. The notation

op

i

(in; v)! (out; v

0

) denotes the fact that the execution of the operation op

i

2 OP with

input value in 2 IN

i

while the value of the object is v yields an output value out 2 OUT

i

and changes the value of the object to v

0

. For operations op

i

that do not take an input

(resp. do not return an output), the set IN

i

(resp. OUT

i

) degenerates to a singleton,

and we denote its unique meaningless value by \{".

Example 2.1 Consider an object \boolean variable" whose domain V is the set f0; 1g.

We de�ne two operations on this object.

� A Read operation for which the set IN is f{g, and the set OUT is f0; 1g. A Read

operation is always de�ned, and its e�ect is de�ned by Read({; v)! (v; v), for all

v 2 f0; 1g.

� AWrite operation for which the set IN is f0; 1g, and the set OUT is f{g. AWrite

operation is always de�ned, and its e�ect is de�ned by Write(v

0

; v) ! ({; v

0

), for

all v; v

0

2 f0; 1g.

A global state s, or simply a state, of a system is an element of the set S = P

1

�

: : :�P

n

�V

1

� : : :�V

m

. A state s = (s(1); s(2); : : : ; s(n); v(1); v(2); : : : ; v(m)) assigns to

each process P

i

a local state s(i) 2 P

i

of this process (this can be viewed as the formal

counterpart of the notion of \program counter" for a physical process), and associates

a value v(j) 2 V

j

with each object O

j

. The initial state s

0

is an element of S. In what

follows, we write l 2 s to mean 9i; 1 � i � n such that l = s(i), i.e., for notational

convenience we allow ourselves to view the state s as a set rather than as a vector.

A transition t 2 T is a tuple (L;G;C;L

0

). Both L and L

0

are partial control states,

i.e., nonempty subsets of [

n

i=1

P

i

such that for each 1 � i � n, jL \ P

i

j = jL

0

\ P

i

j � 1.

The sets L and L

0

are respectively called the preset and postset of the transition t. In the

sequel, pre(t) denotes the preset of the transition t, while post(t) denotes the postset of

the transition t. The processes P

i

's that participate in a transition t, i.e., the processes

P

i

's such that jL \ P

i

j = jL

0

\ P

i

j = 1, are said to be active for this transition. The set

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

2.1. REPRESENTING CONCURRENT SYSTEMS 21

of processes that are active for a transition t is denoted by active(t). The guard G of

the transition is a conjunction of conditions c

j

. Conditions c

j

in G can test the current

value of objects by using operations on these objects that do not modify their value. The

command C of the transition is a function from V

1

� : : :�V

m

to V

1

� : : :�V

m

de�ned by

a sequential composition of operations on objects, with the restriction that an operation

that modi�es the value of an object O

j

cannot be followed by any other operation on O

j

in the remainder of the sequence of operations de�ning the command.

For instance, if x and y are two objects of type \boolean variable" as de�ned in

Example 2.1, \x := y" denotes a command that performs a Read operation on object y,

and then performs a Write operation on object x with the output value returned by the

Read operation. If x is v(k) and y is v(l), the function de�ned by the command x := y is

the function f from V

1

� : : :� V

m

to V

1

� : : :� V

m

such that f((v(1); v(2); : : : ; v(m))) =

(v

0

(1); v

0

(2); : : : ; v

0

(m)) where v

0

(i) = v(i), i 6= k, and v

0

(k) = v(l).

We assume that, for each operation op that appears in the command C of a transition,

if op is not de�ned for all inputs and all values of the object, there is a condition c

j

(expressed by using operations on the object and predicates on its domain and the domain

of its inputs and outputs) in the guard G of the transition such that op is de�ned i� c

j

is

true. Operations that appear either in the guard G or in the command C of a transition

are said to be used by this transition. The set of operations that are used by a transition

t is denoted by used(t). An object is said to be accessed by a transition if the transition

uses an operation on the object.

A transition t = (L;G;C;L

0

) is enabled in a state s i� L � s and G is true in s. If t

is not enabled in s, t is said to be disabled in state s. A transition t that is enabled in a

state s = (s(1); s(2); : : : ; s(n); v(1); v(2); : : : ; v(m)) can be executed. After the execution

of t, the system reaches a state s

0

= (s

0

(1); s

0

(2); : : : ; s

0

(n); v

0

(1); v

0

(2); : : : ; v

0

(m)) such

that:

� fs

0

(1); s

0

(2); : : : ; s

0

(n)g = f(s(1); s(2); : : : ; s(n)g n L) [L

0

; and

� the command C maps (v(1); v(2); : : : ; v(m)) to (v

0

(1); v

0

(2); : : : ; v

0

(m)).

State s

0

is called the successor of s by t. We write s

t

! s

0

to mean that the transition

t leads from the state s to the state s

0

, while s

w

) s

0

means that the �nite sequence of

transitions w leads from s to s

0

. If s

w

) s

0

, s

0

is said to be reachable from s.

Note 2.2 Transitions, as well as operations on objects, are deterministic: the execution

of a transition t in a state s leads to a unique successor state. This is not a restriction

since \nondeterministic transitions" can always be modeled by a set of deterministic

transitions with non mutually exclusive guards.

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

22 CHAPTER 2. CONCURRENT SYSTEMS AND SEMANTICS

2.2 Semantics

A concurrent system as de�ned here is a closed system: from its initial state, it can evolve

and change its state by executing enabled transitions. Therefore, a very natural way to

describe the possible behaviors of such a system is to consider its set of reachable global

states and the transitions that are possible between these.

More speci�cally, the joint global behavior of all processes P

i

in a LFCS can be repre-

sented by an automaton A

G

= (�; S;�; s

0

) where

� � is the alphabet of actions of the LFCS,

� S is the set of states of the LFCS,

� � � S � �� S is the transition relation de�ned as follows:

(s; a; s

0

) 2 � i� 9t 2 T : s

t

! s

0

^ a = �(t);

� s

0

is the initial state of the LFCS.

A transition of � corresponds to the execution of a single transition t 2 T of the system,

and is labeled by �(t). To avoid any confusion with the transitions of T , transitions of

� will be referred to as global transitions, while transitions of T will be referred to as

transitions.

It is natural to restrict A

G

to its states and transitions that are reachable from s

0

,

since the other states and transitions play no role in the behavior of the system. In what

follows, a \state in A

G

" denotes a state that is reachable from the initial state s

0

. A

G

is

called the global state graph or global state space of the system.

Unless otherwise speci�ed, we will assume that the domain of all objects is �nite. This

implies that the size of A

G

is �nite.

In practice, A

G

can be computed by performing a search of all the states that are

reachable from the initial state s

0

. An algorithm for performing such a search is shown

in Figure 2.1. This algorithm recursively explores all successor states of all states en-

countered during the search, starting from the initial state, by executing all enabled

transitions in each state (line 7{8). The main data structures used are a Stack to store

the states whose successors still have to be explored, and a hash table H to store all the

states that have already been visited during the search. The set of all transitions that

are enabled in a state s is denoted by enabled(s). The state reached from a state s after

the execution of a transition t is denoted \succ(s) after t". It is easy to prove that all the

states of A

G

, i.e., all the states that are reachable from s

0

, are visited during the search

performed by the algorithm of Figure 2.1 [AHU74].

2.3. EXAMPLE 23

1 Initialize:Stack is empty; H is empty;

2 push (s

0

) onto Stack;

3 Loop: while Stack 6= ; do f

4 pop (s) from Stack;

5 if s is NOT already in H then f

6 enter s in H;

7 T = enabled(s);

8 for all t in T do f

9 s

0

= succ(s) after t; /* execution of t */

10 push (s

0

) onto Stack;

11 g

12 g

13 g

Figure 2.1: Classical search

For the time being, let us de�ne the set of possible behaviors of a system as the set

of all possible �nite sequences of labels (actions) that the system can execute from its

initial state. (In�nite sequences will be considered later in Chapter 7.) Formally, a �nite

sequence (word) w = a

1

a

2

: : : a

n

of actions in � is accepted by A

G

if there is a sequence

of states � = s

0

: : : s

n

such that s

0

is the initial state of A

G

and, for all 1 � i � n,

(s

i�1

; a

i

; s

i

) 2 �. We call such a sequence � a computation of A

G

on w. The set of words

accepted by A

G

is called the language accepted by A

G

. With our de�nition, this language

is pre�x closed.

2.3 Example

As an example of concurrent system, consider the well-known dining-philosophers prob-

lem, with two philosophers. This system can be modeled by the following LFCS.

� P = fA;Bg, where A = fa

0

; a

1

; a

2

; a

3

g and B = fb

0

; b

1

; b

2

; b

3

g (the system is

composed of two processes A and B; each process models one philosopher);

� O = ff

1

; f

2

g, where f

1

and f

2

are two objects of type \boolean variable" as de�ned

in Example 2.1 (f

1

and f

2

model two forks that can be accessed by philosophers A

and B);

24 CHAPTER 2. CONCURRENT SYSTEMS AND SEMANTICS

� T = ft

A

1

; t

A

2

; t

A

3

; t

A

4

; t

B

1

; t

B

2

; t

B

3

; t

B

4

g, where

t

A

1

= (a

0

; f

1

= 0; f

1

:= 1; a

1

), t

B

1

= (b

0

; f

2

= 0; f

2

:= 1; b

1

), (take left fork)

t

A

2

= (a

1

; f

2

= 0; f

2

:= 1; a

2

), t

B

2

= (b

1

; f

1

= 0; f

1

:= 1; b

2

), (take right fork)

t

A

3

= (a

2

; true; f

1

:= 0; a

3

), t

B

3

= (b

2

; true; f

2

:= 0; b

3

), (release left fork)

t

A

4

= (a

3

; true; f

2

:= 0; a

0

), t

B

4

= (b

3

; true; f

1

:= 0; b

0

). (release right fork)

� � : T 7! � is the identity function from T to itself;

� s

0

= (a

0

; b

0

; 0; 0) 2 A� B � V

f

1

� V

f

2

(initially, A is in state a

0

, B is in state b

0

,

and the two forks are released).

Forks are modeled by boolean variables f

i

. When f

i

is equal to 0, fork f

i

is ready to be

taken by any philosopher. When f

i

is equal to 1, fork f

i

is already taken by a philosopher,

and cannot be taken by the other. Consider philosopher A. From its initial local control

state a

0

, A can try to take fork f

1

: this is modeled by transition t

A

1

where process A tests

in its guard if fork f

1

is available (it tests if f

1

is equal to 0), and then takes it if it is

available by executing f

1

:= 1 (it sets the value of f

1

to 1). Then, process A can try to

take fork f

2

in a similar way by trying to execute transition t

A

2

. When A has taken both

its left and right forks, i.e., when it reaches its local state a

2

, it can eat. Then, it releases

its left fork (transition t

A

3

) and next its right fork (transition t

A

4

), and goes back to its

initial (thinking) state. Process B proceeds in a similar way.

The global state spaceA

G

of the two-dining-philosophers system is shown in Figure 2.2.

It contains 8 states and 10 transitions.

2.4 Discussion

Why did we choose to represent concurrent systems by labeled formal concurrent systems

(LFCS) as de�ned above? LFCS is the result of our search for a unique model that is

su�ciently general for serving as support for all the various notions and algorithms that

will be presented in this thesis.

Despite its simplicity, LFCS can be used to model easily many di�erent types of

systems and communication mechanisms. Several processes can synchronize on the

same transition by being active for this transition. This enables one to model two-

way rendez-vous (pairwise CCS-like synchronizations) as well as multi-way rendez-vous

(multi-process CSP-like synchronizations). Processes can also communicate asynchro-

nously by performing operations on shared objects, like shared variables, or semaphores.

Message-passing communication is possible via objects modeling FIFO bu�ers.

2.4. DISCUSSION 25

(a

0

; b

0

; 0; 0)

(a

1

; b

0

; 1; 0) (a

0

; b

1

; 0; 1)

(a

1

; b

1

; 1; 1)(a

2

; b

0

; 1; 1) (a

0

; b

2

; 1; 1)

(a

3

; b

0

; 0; 1) (a

0

; b

3

; 1; 0)

t

B

1

t

A

1

t

B

1

t

A

1

t

B

2

t

A

2

t

A

3

t

B

3

t

A

4

t

B

4

Figure 2.2: Global state space for the two-dining-philosophers system

LFCS can be viewed as an extension of the formal concurrent systems (FCS) of [Gri90],

itself being inspired by a formalism used in [Sif82]. In FCS, transitions are not labeled,

no particular initial state is associated with a system, and objects (called variables in

FCS) are just memory locations without a general notion of operation. FCS is presented

in [Gri93] as a trade-o� between CSP [Hoa85] and UNITY [CM88], which are both related

to Dijkstra's Guarded Command language [Dij76]. Indeed, FCS (and LFCS) is structured

into processes as in CSP, while the notion of parallel composition of processes is avoided

as in UNITY by explicitly representing synchronizations between processes by \joint"

transitions, i.e., transitions for which several processes are active. In this way, (L)FCS

can represent concurrent systems independently of a particular semantics of parallel

composition of processes. LFCS has also similarities with Petri Nets [Pet81, Rei85]. By

removing the set O of objects in a LFCS, one obtains a contact-free one-safe Petri Net

in which the number of tokens remains permanently equal to the number n of processes,

and whose transitions are labeled with symbols in �.

One could wonder why objects have been introduced in LFCS. Indeed, since the set

of possible values for all objects is assumed to be �nite, objects could be represented by

�nite-state processes. However, in practice, representing objects by processes is tedious.

For example, a variable whose value can range on a �nite domain V would be represented

26 CHAPTER 2. CONCURRENT SYSTEMS AND SEMANTICS

by a process containing as many local states as there are possible di�erent values for the

variable, i.e., jV j states. Objects enable one to model data structures more compactly

and directly.

Another, more fundamental, reason for using objects is that control should be clearly

distinguished from data in the modeling of concurrent reactive systems. Indeed, the

properties one wants to check on such systems are often properties that involve only the

control part of the processes of the system. Hence, control is of primary interest during

the analysis of such systems, while data are relevant only if they inuence the control

part of the processes. Therefore, distinguishing control from data in the model itself can

help to identify what is relevant for the veri�cation of a given property, and what is not.

We will show that the methods developed in this thesis are able to take advantage of

these information to make veri�cation more e�cient.

For a similar reason, the notion of process is important in LFCS: information about

which process is active for which transition is exploited by some of the algorithms that

will be presented later to further improve the veri�cation (see Chapter 4). The reason

why transitions in a LFCS are labeled will also appear later, in Chapter 7.

Chapter 3

Using Partial Orders to Tackle

State Explosion

When the global state space A

G

of a system is �nite, it is theoretically possible to explore

the whole of A

G

in order to check properties of the system. In practice, this is often not

the case: A

G

is frequently much too large to be exhaustively explored. This phenomenon

is called the state-explosion problem.

One cause of the state-explosion problem is the modeling of concurrency by inter-

leaving: all interleavings of all concurrent transitions of the system are represented in

A

G

. In this Chapter, we show that exploring all these interleavings is not necessary for

veri�cation.

3.1 Independent Transitions

The intuition behind the methods developed in this thesis is that concurrent executions

are really partial orders where concurrent \independent" transitions should be left un-

ordered. When can transitions be considered as independent? The intuitive idea is that

transitions are independent when the order of their occurrence is irrelevant.

This notion of independency between transitions and its complementary notion, the

notion of dependency, can be formalized by the following de�nition (adapted from [KP92a]).

De�nition 3.1 Let T be the set of transitions in a LFCS and D � T � T be a binary,

reexive, and symmetric relation. The relation D is a valid dependency relation for the

LFCS i� for all t

1

; t

2

2 T , (t

1

; t

2

) 62 D (t

1

and t

2

are independent) implies that the two

following properties hold for all global states s 2 S of the LFCS:

27

28 CHAPTER 3. USING PARTIAL ORDERS TO TACKLE STATE EXPLOSION

1. if t

1

is enabled in s and s

t

1

! s

0

, then t

2

is enabled in s i� t

2

is enabled in s

0

(independent transitions can neither disable nor enable each other); and

2. if t

1

and t

2

are enabled in s, then there is a unique state s

0

such that s

t

1

t

2

) s

0

and

s

t

2

t

1

) s

0

(commutativity of enabled independent transitions).

This de�nition characterizes the properties of possible \valid" dependency relations for

the transitions of a given LFCS. One can wonder if this de�nition is of more than semantic

use. Indeed, it is not practical to check the two properties listed above for all pairs of

transitions for all states in order to determine which transitions are independent and

which are not. Fortunately, in practice, it is possible to give easily checkable syntactic

conditions that are su�cient for transitions to be independent.

For instance, with LFCS, a su�cient syntactic condition for two transitions t

1

and t

2

in T to be independent is that:

1. the set of processes that are active for t

1

is disjoint from the set of processes that

are active for t

2

, and

2. the set of objects that are accessed by t

1

is disjoint from the set of objects that are

accessed by t

2

.

It is easy to see that the dependency relation induced by the above syntactic condition

is a valid one. Detecting independency in concurrent systems is further discussed in

Section 3.4.

Note 3.2 With the LFCS model we have chosen for representing concurrent systems,

each global transition in the global state space of a system corresponds to the execution

of exactly one transition appearing in the representation of the system, i.e., one element

of the set T of the LFCS. With models that include a notion of parallel composition of

processes, the correspondence between global transitions and transitions that appear in

the description of a system is less straightforward. Indeed, this correspondence depends

on the semantics of the parallel composition, which determine how several transitions

of di�erent processes can be synchronized to form one global transition. Such global

transitions can then be grouped into \system transitions", on which dependency relations

can be de�ned [GW93].

3.2. TRACES 29

3.2 Traces

Following the work of Mazurkiewicz [Maz86], one can use the notion of independent

transitions to de�ne an equivalence relation on sequences of transitions: two sequences of

transitions are equivalent if they can be obtained from each other by successively permuting

adjacent independent transitions. Thus, given a valid dependency relation, sequences of

transitions can be grouped into equivalence classes which Mazurkiewicz calls traces.

Formally, Mazurkiewicz's traces are de�ned as follows [Maz86].

De�nition 3.3 A concurrent alphabet is a pair � = (T ;D) where T is a �nite set of

symbols (here transitions), called the alphabet of �, and where D is a binary, reexive,

and symmetric relation on T called the dependency in �.

The relation I

�

= T

2

nD stands for the independency in �.

De�nition 3.4 Let � = (T ;D) be a concurrent alphabet, let T

�

represent the set of

all �nite sequences (words) of symbols in T , let � stand for the concatenation operation,

and let " denote the empty word. We de�ne the relation �

�

as the least congruence in

the monoid [T

�

; �; "] such that

(t

1

; t

2

) 2 I

�

) t

1

t

2

�

�

t

2

t

1

:

The relation �

�

is referred to as the trace equivalence over �. [T

�

; �; "] is a monoid

in which the concatenation operation � may be commutative for some pairs of di�erent

elements. It is sometimes called a free partially commutative monoid over T .

De�nition 3.5 Equivalence classes of �

�

are called traces over �.

The trace containing a sequence of transitions w will be denoted [w]

(T ;D)

or [w] for short

when there is no ambiguity. A trace is fully characterized by one of its sequences w

and a concurrent alphabet � = (T ;D): by successively permuting adjacent independent

transitions in w, one can obtain all the other sequences in [w].

In Mazurkiewicz's trace semantics, the behavior of a concurrent system is de�ned as a

set of traces. Mazurkiewicz's trace semantics is often referred to as being a partial-order

semantics because it is possible to de�ne a correspondence between traces and partial

orders of occurrences of transitions [Maz86].

30 CHAPTER 3. USING PARTIAL ORDERS TO TACKLE STATE EXPLOSION

t

2

t

1

t

3

t

1

Figure 3.1: Partial order of transition occurrences

De�nition 3.6 A relation R � A� A on a set A that is reexive, antisymmetric, and

transitive is called a partial order. A partial order R � A�A is also a total order if, for

all a

1

; a

2

2 A, either (a

1

; a

2

) 2 R or (a

2

; a

1

) 2 R [LP81].

A partial order R � A�A can be represented graphically by a directed graph whose

vertices are elements of A and whose edges are elements of R: (a

1

; a

2

) 2 R i� there is an

edge from a

1

to a

2

.

De�nition 3.7 A linearization of a partial order R � A�A is a total order R

0

� A�A

such that R

0

� R.

The following theorem states that a partial order can be represented by the set of its

linearizations (e.g., [Pra86]).

Theorem 3.8 The intersection of all the linearizations of a partial order is that partial

order.

A correspondence between traces and partial orders of transition occurrences can be

de�ned in such a way that the set of transition sequences in the trace is the set of all

linearizations of the partial order of transition occurrences.

Example 3.9 Consider the set T = ft

1

; t

2

; t

3

g of transitions, and assume that t

1

is

dependent with respect to t

2

and t

3

, while t

2

and t

3

are independent: we have D =

f(t

1

; t

1

); (t

2

; t

2

); (t

3

; t

3

); (t

1

; t

2

); (t

2

; t

1

); (t

1

; t

3

); (t

3

; t

1

)g. Then, the sequence w = t

1

t

2

t

3

t

1

of transitions de�nes the trace [w] = ft

1

t

2

t

3

t

1

; t

1

t

3

t

2

t

1

g (the second sequence t

1

t

3

t

2

t

1

can

be obtained from the �rst sequence t

1

t

2

t

3

t

1

by permuting the two adjacent independent

transitions t

2

and t

3

in the �rst sequence). The sequence w contains 4 transition oc-

currences. Consider the partial order R � A � A that is graphically represented in

Figure 3.1: vertices are elements of A (transition occurrences), while edges are elements

3.3. SELECTIVE SEARCH 31

of R (edges implied by transitivity or reexivity are omitted in Figure 3.1). The set of

all linearizations of this partial order of transition occurrences coincides with the set of

transition sequences in [w].

By de�nition, all transition sequences in a given trace contain the same number of

transitions. Moreover, we have the following.

Theorem 3.10 Let s be a state in A

G

. If s

w

1

) s

1

and s

w

2

) s

2

in A

G

, and if [w

1

] = [w

2

],

then s

1

= s

2

.

Proof:

By de�nition, all w

0

2 [w] can be obtained from w by successively permuting pairs of

adjacent independent transitions. It is thus su�cient to prove that, for any two words

w

1

and w

2

that di�er only by the order of two adjacent independent transitions, if s

w

1

) s

0

then s

w

2

) s

0

.

Let us thus assume that w = t

1

: : : ab : : : t

n

and w

0

= t

1

: : : ba : : : t

n

. We have

s

t

1

! s

1

t

2

! s

2

: : :

t

i

! s

i

a

! s

i+1

b

! s

i+2

: : :

t

n

! s

n

and

s

t

1

! s

1

t

2

! s

2

: : :

t

i

! s

i

b

! s

0

i+1

a

! s

0

i+2

: : :

t

n

! s

0

n

:

Since a and b are independent, it follows that s

i+2

= s

0

i+2

. Since the transitions in w

1

from s

i+2

and the transitions in w

2

from s

0

i+2

are identical, we have s

n

= s

0

n

.

3.3 Selective Search

From Theorem 3.10, it follows that, in order to determine if a state is reachable by any

sequence of transitions in a trace, it is su�cient to explore only one sequence in that

trace. This property is fundamentally what will allow us to explore only a reduced part

of the global state space A

G

of a system in order to prove properties of that system.

Indeed, consider for instance the problem of detecting deadlocks, i.e., terminating

states. A deadlock in a system is a state that is reachable from the initial state s

0

of the

system and where all processes are blocked. Formally, one has:

De�nition 3.11 A state s in A

G

is a deadlock i� there is no transition from s in A

G

.

32 CHAPTER 3. USING PARTIAL ORDERS TO TACKLE STATE EXPLOSION

If there is a deadlock d in A

G

, there is a sequence w of transitions from s

0

to d in A

G

,

and hence a trace [w] from s

0

to d in A

G

. Since all sequences w

0

2 [w] also lead from s

0

to d, it is su�cient to explore only one of the w

0

in [w] to visit d, and thus to detect it.

Consequently, it is su�cient to explore only one interleaving for each trace the system

can execute from its initial state in order to detect all deadlocks d in this system. Deadlock

detection is thus reduced to the problem of exploring (at least) one interleaving per

\maximal" trace the system can execute from its initial state.

The latter problem can be solved by performing what we call a selective search in

A

G

. A selective search operates as a classical state-space search except that, at each

state s reached during the search, it computes a subset T of the set of transitions that

are enabled in s, and explores only the transitions in T , the other enabled transitions

being not explored. Clearly, a selective search through A

G

only reaches a subset (not

necessarily proper) of the states and transitions in A

G

. If, in each visited state s, the

�rst transition of (at least) one interleaving per trace leading to a deadlock is selected

in the set T of transitions to be explored from s, all deadlocks in A

G

will eventually be

visited by such a selective search.

In the next two Chapters, we develop two techniques for computing such sets T :

\persistent sets" and \sleep sets". The speci�cation of the algorithms we present in

Chapters 4 and 5 is thus that they should �nd all deadlocks in A

G

while exploring as

small a fraction as possible of A

G

. The veri�cation of more general properties than

deadlock detection will be discussed in Chapters 6 and 7.

Before turning to the presentation of persistent sets and sleep sets, let us further

discuss how to detect independency in the description of concurrent systems.

Note 3.12 It might appear that we are using Mazurkiewicz's trace semantics, i.e., that

we consider that the behavior of a system is the set of all possible traces it can execute

from its initial state. This is not really so. Indeed, to view Mazurkiewicz's theory as a

semantics, the dependency relation should be considered as part of the semantics: given a

dependency relation, one can determine the Mazurkiewicz semantics of a system. The cri-

terion for a partial construction of the state space would then be that the Mazurkiewicz's

trace semantics are preserved. Here a less restrictive point of view is taken. Indeed, our

only requirement on selective searches is that they visit enough interleavings to make

checking the desired property possible. The link with Mazurkiewicz's trace semantics is

only in the fact that the algorithms presented in the next Chapters rely on the concept

of independency and on the properties it implies, especially Theorem 3.10.

3.4. DETECTING INDEPENDENCY IN CONCURRENT SYSTEMS 33

3.4 Detecting Independency in Concurrent Systems

3.4.1 Towards More Independency

The algorithms presented in this thesis take advantage of the independency between tran-

sitions that are simultaneously enabled in order to avoid exploring all their interleavings,

and thus to avoid exploring parts of the state space. It is therefore desirable to be able

to detect independency between transitions as e�ciently as possible.

In Section 3.1, we gave the following su�cient syntactic condition for two transitions

t

1

and t

2

in T to be independent in our LFCS model.

A su�cient syntactic condition for two transitions t

1

and t

2

in T to be inde-

pendent is that:

1. the set of processes that are active for t

1

is disjoint from the set of

processes that are active for t

2

, and

2. the set of objects that are accessed by t

1

is disjoint from the set of objects

that are accessed by t

2

.

Intuitively, \dependency" may arise between two transitions because of either their con-

trol part (point 1) or their data part (point 2).

We now discuss how more discriminating criteria can be developed.

For instance, point 1 of the above condition could be replaced by the new condition:

(pre(t

1

) [post(t

1

)) \ (pre(t

2

) [post(t

2

)) = ;:

Indeed, it is easy to show that this new condition also induces a valid dependency re-

lation, i.e., that two transitions t

1

and t

2

that satisfy the new condition and that do

not both access a common object cannot enable nor disable each other, and are com-

mutative. Moreover, this new condition is weaker than the previous one. Indeed, two

transitions t

1

and t

2

that satisfy point 1 above also satisfy the new condition, while

the converse is not true (e.g., consider the two transitions t

1

= (fl

1

g; G

1

; C

1

; fl

2

g) and

t

2

= (fl

3

g; G

2

; C

2

; fl

4

g) such that l

1

; l

2

; l

3

; l

4

are local states of a same process). Hence,

one might think that using the new condition is preferable. Maybe surprisingly, this is

not the case. Indeed, as will appear in the next Chapters, what actually matters is to

have as few dependencies as possible between transitions that may be simultaneously en-

abled. Since it can be shown that two transitions t

1

and t

2

that satisfy the new condition

but that do not satisfy point 1 above cannot be simultaneously enabled, this particular

re�nement of point 1 is actually useless (see Section 4.3).

福昕
高亮

福昕
高亮

34 CHAPTER 3. USING PARTIAL ORDERS TO TACKLE STATE EXPLOSION

Concerning point 2, \dependency" may arise if t

1

and t

2

access a common object.

Now, not every pair of operations on an object need be considered as dependent. Thus

we can obtain more independency by considering not only which objects a transition

accesses, but also which operations on these objects the transition performs.

We thus introduce the following de�nition of a valid dependency relation between the

operations on an object.

De�nition 3.13 Let O = (V;OP) be an object, and D

O

� OP � OP be a binary

and symmetric relation. The relation D

O

is a valid dependency relation for O i� for

all op

1

; op

2

2 OP , (op

1

; op

2

) 62 D

O

(op

1

and op

2

are independent) implies that the two

following properties hold for all values v 2 V , and for all inputs in

1

and in

2

:

1. if op

1

(in

1

; v) is de�ned, with op

1

(in

1

; v)! (out

1

; v

0

1

), then op

2

(in

2

; v) is de�ned i�

op

2

(in

2

; v

0

1

) is de�ned; and

2. if op

1

(in

1

; v) and op

2

(in

2

; v) are de�ned, then 9out

1

; out

2

; v

0

1

; v

0

2

; v

00

such that:

� op

1

(in

1

; v)! (out

1

; v

0

1

) and op

2

(in

2

; v

0

1

)! (out

2

; v

00

); and

� op

2

(in

2

; v)! (out

2

; v

0

2

) and op

1

(in

1

; v

0

2

)! (out

1

; v

00

)

(commutativity of operations, together with preservation of the outputs).

Example 3.14 Consider again the example of an object representing a boolean value. A

valid dependency relation between the operations on this object is given in the following

table, where \+" means that operations are dependent, while \{" denotes the fact that

operations are independent:

DEP. Write Read

Write + +

Read + {

Two Write operations are dependent because they can result in the object having dif-

ferent values depending on the order of their execution. A Read and a Write operations

are dependent because the output of the Read can be di�erent depending on the order

of execution of these operations. Two Read operations are independent because they are

always de�ned and return the same output independently of the order of their execution.

Now, we can de�ne a dependency relation between transitions in a LFCS from depen-

dency relations between operations.

3.4. DETECTING INDEPENDENCY IN CONCURRENT SYSTEMS 35

De�nition 3.15 Let T be the set of transitions in a LFCS. Two transitions t

1

; t

2

2 T

are independent if:

1. the set of processes that are active for t

1

is disjoint from the set of processes that

are active for t

2

, and

2. 8op

1

2 used(t

1

) and 8op

2

2 used(t

2

), if op

1

and op

2

are two operations on a same

object, then op

1

and op

2

are independent.

One can easily check that the dependency relation on transitions obtained with this

de�nition is weaker than the one of Section 3.1 and is a valid one. But, it is possible to

go further.

3.4.2 Re�ning Dependencies between Operations

In practice, there are essentially two ways of re�ning dependencies between operations:

by re�ning the operations themselves and by using conditional dependency [GP93].

Re�ning an operation op

i

consists of splitting the operation viewed as a set of pairs

(IN

i

� V;OUT

i

� V) in several parts, and considering these di�erent parts as being

di�erent operations, between which some independency may arise.

Example 3.16 Consider again the example of the object corresponding to a boolean

variable. We saw that, in general, two Write operations are dependent. But there

are special cases of Write operations that can be considered as being independent: for

instance, two complementation operations Compl, formally de�ned by Compl({; 0)! ({

; 1) and Compl({; 1) ! ({; 0) (always de�ned), can be considered as being independent

according to De�nition 3.13. We obtain a new dependency relation:

DEP. Write Compl Read

Write + + +

Compl + { +

Read + + {

In the previous example, the new dependency relation obtained after re�ning the

operation Write may yield less dependencies between the transitions of the program.

36 CHAPTER 3. USING PARTIAL ORDERS TO TACKLE STATE EXPLOSION

It is thus preferable to use Compl rather than Write whenever possible. In practice,

this can be done by adding the operation Compl to the modeling language and by

using it explicitly in the description of the system, or the veri�cation tool could detect

automatically when a Write operation actually performs a Compl operation.

The second way of re�ning dependency relations is to de�ne them as being conditional:

instead of de�ning a dependency relation that holds for all states s in A

G

, it is possible

to de�ne a dependency relation for each state individually [KP92a]. De�nition 3.1 then

becomes:

De�nition 3.17 Let T be the set of transitions in a LFCS and D � T � T � S. The

relation D is a valid conditional dependency relation for the LFCS i� for all t

1

; t

2

2 T ; s 2

S, (t

1

; t

2

; s) 62 D (t

1

and t

2

are independent in s) implies that (t

2

; t

1

; s) 62 D and that the

two following properties hold in state s:

1. if t

1

is enabled in s and s

t

1

! s

0

, then t

2

is enabled in s i� t

2

is enabled in s

0

(independent transitions can neither disable nor enable each other); and

2. if t

1

and t

2

are enabled in s, then there is a unique state s

0

such that s

t

1

t

2

) s

0

and

s

t

2

t

1

) s

0

(commutativity of enabled independent transitions).

De�nition 3.13 can be adapted in a similar way as follows.

De�nition 3.18 Let O = (V;OP) be an object, and D

O

� OP �OP �V . The relation

D

O

is a valid conditional dependency relation for O i� for all op

1

; op

2

2 OP; v 2 V ,

(op

1

; op

2

; v) 62 D

O

(op

1

and op

2

are independent for v) implies that (op

2

; op

1

; v) 62 D

O

and

that the two following properties hold for v, and for all inputs in

1

and in

2

:

1. if op

1

(in

1

; v) is de�ned, with op

1

(in

1

; v)! (out

1

; v

0

1

), then op

2

(in

2

; v) is de�ned i�

op

2

(in

2

; v

0

1

) is de�ned; and

2. if op

1

(in

1

; v) and op

2

(in

2

; v) are de�ned, then 9out

1

; out

2

; v

0

1

; v

0

2

; v

00

such that:

� op

1

(in

1

; v)! (out

1

; v

0

1

) and op

2

(in

2

; v

0

1

)! (out

2

; v

00

); and

� op

2

(in

2

; v)! (out

2

; v

0

2

) and op

1

(in

1

; v

0

2

)! (out

1

; v

00

)

(commutativity of operations, with the same outputs).

3.4. DETECTING INDEPENDENCY IN CONCURRENT SYSTEMS 37

Note that, in De�nition 3.18, dependency is de�ned for two operations on the same object

for a particular value v of the object, but for all inputs the operations can have. This

could be also re�ned in a similar way by considering di�erent possible inputs separately,

etc. For the sake of simplicity, this re�nement will not be considered here.

In what follows, two operations on an object O

j

, 1 � j � m, will be said to be

independent in state s i� they are independent for the value v 2 V

j

of the object O

j

in

state s.

Example 3.19 Consider an object representing a bounded FIFO channel (bu�er) of size

N . The domain V of possible values for this object is the set of sequences of messages

f;g [M [M

2

[: : : [M

N

, where M is the set of messages that can be transmitted via

the channel. We de�ne three operations Send, Receive and Length on this object such

that:

� Send(v; v

1

v

2

: : : v

n

)! ({; v

1

v

2

: : : v

n

v) de�ned if n < N and v 2M ,

� Receive({; v

1

v

2

: : : v

n

)! (v

1

; v

2

: : : v

n

) de�ned if n > 0,

� Length({; v

1

v

2

: : : v

n

)! (n; v

1

v

2

: : : v

n

) always de�ned.

The following tables give respectively a constant and a conditional dependency relation

between these operations. If the condition given in the row op and column op

0

of the

table is true for the value v 2 V considered (n is the number of messages in the channel),

then op and op

0

are dependent for v. Otherwise, they are independent. A \{" in the

table represents a condition which is always false (operations always independent).

DEP. Send Receive Length

Send + + +

Receive + + +

Length + + {

DEP. Send Receive Length

Send n < N n = 0 or n = N n < N

Receive n = 0 or n = N n > 0 n > 0

Length n < N n > 0 {

Thanks to conditional dependency, operations that are dependent for some but not all

values v 2 V are no more considered as being dependent for all values.

38 CHAPTER 3. USING PARTIAL ORDERS TO TACKLE STATE EXPLOSION

We can still reduce dependencies between operations by simultaneously re�ning the

operations and by using conditional dependency.

Example 3.20 Consider the previous example. In real protocol models, the operation

Length is often used to test if a channel is empty or full [GP93]. Let us introduce two

new operations Empty and Full de�ned as follows:

� Empty({; v

1

v

2

: : : v

n

)! (if (n = 0) then true else false; v

1

v

2

: : : v

n

) always de�ned.

� Full({; v

1

v

2

: : : v

n

)! (if (n = N) then true else false; v

1

v

2

: : : v

n

) always de�ned.

A new dependency relation can then be de�ned:

DEP. Send Receive Length Empty Full

Send n < N n = 0 or n = N n < N n = 0 n = N � 1

Receive n = 0 or n = N n > 0 n > 0 n = 1 n = N

Length n < N n > 0 { { {

Empty n = 0 n = 1 { { {

Full n = N � 1 n = N { { {

Note that, when using a conditional dependency relation, the de�nition of a trace has

to be slightly modi�ed: two sequences

s

t

1

! s

1

: : :

t

i

! s

i

a

! s

i+1

b

! s

i+2

: : :

t

n

! s

n

and

s

t

1

! s

1

: : :

t

i

! s

i

b

! s

0

i+1

a

! s

0

i+2

: : :

t

n

! s

0

n

in A

G

belong to the same \conditional trace [t

1

: : : t

n

] from state s in A

G

", denoted

[t

1

: : : t

n

]

s

, if a and b are independent in state s

i

. Conditional traces are thus equivalence

classes of transition sequences originating from the same state in A

G

.

It is pointed out in [KP92a] that, maybe surprisingly, a conditional trace does not

necessarily correspond anymore to a partial order of transition occurrences: the set of

sequences in a conditional trace does not always correspond to the set of all linearizations

of a partial order. However, Theorem 3.10 is still satis�ed by conditional traces (just

replace in the proof \a and b are independent" by \a and b are independent in s

i

").

Since the preservation of this theorem is the main assumption about traces which is

needed by the algorithms we develop in the sequel of this thesis, we will not distinguish

traces from conditional traces unless otherwise speci�ed.

3.4. DETECTING INDEPENDENCY IN CONCURRENT SYSTEMS 39

3.4.3 Summary

A valid conditional dependency relation between the transitions of a LFCS can be de�ned

from valid conditional dependency relations between operations on objects as follows.

De�nition 3.21 Let T be the set of transitions in a LFCS. Two transitions t

1

; t

2

2 T

are independent in state s 2 S if:

1. the set of processes that are active for t

1

is disjoint from the set of processes that

are active for t

2

, and

2. 8op

1

2 used(t

1

) and 8op

2

2 used(t

2

), if op

1

and op

2

are two operations on the same

object, then op

1

and op

2

are independent in s.

Since we assumed in Section 2.1 that, in the command of a transition, an operation that

modi�es the value of a given object cannot be followed by any other operation on this

object in the remainder of the sequence of operations de�ning the command, it is easy

to show that the conditional dependency relation on transitions obtained with the above

de�nition is a valid one.

In practice, valid dependency relations between all possible operations on each type

of shared (communication) objects are de�ned as carefully as possible once and for all.

They can be represented, for instance, by tables like the ones presented in the previous

Section. From these tables and De�nition 3.21, dependencies between transitions can

then be computed directly.

For the sake of generality, we will only consider in the sequel the (more general) case

where a valid conditional dependency relation between transitions is used, though all the

algorithms that are presented in the following Chapters can also be used with a valid

constant dependency relation between transitions.

In summary, we thus assume in the sequel that, for each type of (communication)

objects, a valid conditional dependency relation between all possible operations on the

object is given. Then, for each LFCS, a valid conditional dependency relation for the

LFCS is obtained by using De�nition 3.21 and the valid conditional dependency relations

on operations on objects used by the transitions of the LFCS. This valid conditional de-

pendency relation determines the dependencies between all the transitions of the LFCS.

40 CHAPTER 3. USING PARTIAL ORDERS TO TACKLE STATE EXPLOSION

Chapter 4

Persistent Sets

The �rst technique for computing the set of transitions T to consider in a selective search

actually corresponds to a whole family of algorithms [Ove81, Val91, GW91b] that have

been proposed independently by several researchers. In this Chapter, we show that all

these algorithms actually compute persistent sets, and compare them with each other.

Then we present an algorithm that generalizes the previous ones in a sense that will be

given later.

4.1 De�nition

Persistent sets were introduced in [GP93]. Intuitively, a subset T of the set of transitions

enabled in a state s of A

G

is called persistent in s if all transitions not in T that are

enabled in s, or in a state reachable from s through transitions not in T , are independent

with all transitions in T . In other words, whatever one does from s, while remaining

outside of T , does not interact with or a�ect T . Formally, we have the following.

De�nition 4.1 A set T of transitions enabled in a state s is persistent in s i�, for all

nonempty sequences of transitions

s = s

1

t

1

! s

2

t

2

! s

3

: : :

t

n�1

! s

n

t

n

! s

n+1

from s in A

G

and including only transitions t

i

62 T , 1 � i � n, t

n

is independent in s

n

with all transitions in T .

Note that the set of all enabled transitions in a state s is trivially persistent since nothing

is reachable from s by transitions that are not in this set.

41

42 CHAPTER 4. PERSISTENT SETS

1 Initialize:Stack is empty; H is empty;

2 push (s

0

) onto Stack;

3 Loop: while Stack 6= ; do f

4 pop (s) from Stack;

5 if s is NOT already in H then f

6 enter s in H;

7 T = Persistent Set(s);

8 for all t in T do f

9 s

0

= succ(s) after t; /* t is executed */

10 push (s

0

) onto Stack;

11 g

12 g

13 g

Figure 4.1: Persistent-set selective search

Let a persistent-set selective search be a selective search through A

G

which, in each

state s that it reaches, explores only a set T of enabled transitions that is persistent in

s, and that is nonempty if there exist transitions enabled in s. Such an algorithm is

illustrated in Figure 4.1. Let A

R

be the reduced state-space explored by a persistent-set

selective search. We now prove that such a search reaches all deadlock states of A

G

(cf.

De�nition 3.11), i.e., all deadlocks in A

G

are also present in A

R

.

Lemma 4.2 Let s be a state in A

R

, and let d be a deadlock reachable from s in A

G

by

a nonempty sequence w of transitions. For all w

i

2 [w]

s

, let t

i

denote the �rst transition

of w

i

. Let Persistent Set(s) be a nonempty persistent set in s. Then, at least one of the

transitions t

i

is in Persistent Set(s).

Proof:

Let the sequencew of transitions be t

1

t

2

: : : t

n

, and let s = s

1

t

1

! s

2

t

2

! s

3

: : :

t

n�1

! s

n

t

n

! d

be the sequence of states it goes through in A

G

. Assume �rst that none of the transitions

in w are in Persistent Set(s). Then, by De�nition 4.1 of persistent sets, for all transitions

t

j

, 1 � j � n, t

j

is independent in s

j

with all transitions in Persistent Set(s). Thus,

by De�nition 3.17 of independent transitions, all transitions in Persistent Set(s) remain

enabled in all states s

j

, 1 � j � n, and in d, which hence cannot be a deadlock. Thus,

some transition of the sequence w from s to d must be in Persistent Set(s).

4.2. COMPUTING PERSISTENT SETS 43

Let thus t

k

be the �rst transition in w that is in Persistent Set(s) and let w

0

be the

sequence t

k

t

1

: : : t

k�1

t

k+1

: : : t

n

, i.e., the sequence w where the transition t

k

is moved to

the �rst position. By De�nition 4.1 of persistent sets, we have that for all 1 � j < k, t

j

is independent with t

k

in s

j

. Consequently, by de�nition of a trace, w

0

2 [w]

s

, and the

lemma is proved.

Theorem 4.3 Let s be a state in A

R

, and let d be a deadlock reachable from s in A

G

by

a sequence w of transitions. Then, d is also reachable from s in A

R

.

Proof:

The proof proceeds by induction on the length of w. For jwj = 0, the result is

immediate. Now, assume the theorem holds for paths (sequences of transitions) of length

n � 0 and let us prove that it holds for paths w of length n+ 1.

Assume a deadlock d can be reached from a state s by a path w of length n + 1 in

A

G

. For all w

i

2 [w]

s

, let t

i

denote the �rst transition of w

i

. Let Persistent Set(s) be

the nonempty persistent set that is selected in s by the algorithm of Figure 4.1, i.e., the

set of transitions that are explored from s in A

R

. From Lemma 4.2, we know that at

least one of the transitions t

i

is in Persistent Set(s). Since t

i

is in Persistent Set(s), it is

explored from state s and a state from which a path of length n leads to the deadlock d

is reached in A

R

. This together with the inductive hypothesis proves the theorem.

From Theorem 4.3 it is then immediate to conclude that a persistent-set selective

search started in the initial state of A

G

will explore all deadlocks in A

G

.

4.2 Computing Persistent Sets

Of course, the key element required for the implementation of a persistent-set selective

search is an algorithm for computing persistent sets. Several such algorithms have been

proposed independently by various researchers [Ove81, Val91, GW91b]. In this Chapter,

we present these algorithms, and show that they all compute persistent sets.

All these algorithms infer the persistent sets from the static structure (code) of the

system being veri�ed. They di�er by the type of information about the system de-

scription that they use. The aim of these algorithms is to obtain the smallest possible

nonempty persistent sets. Usually, the more information about the system description

the algorithm uses, the smaller the persistent set it produces can be, albeit at the cost of

a higher computational complexity. Note that exploring the smallest number of enabled

transitions at each step of the search is only a heuristics: it does not necessary lead to

the exploration of the smallest number of states. We will come back to this point in

Section 4.8.

44 CHAPTER 4. PERSISTENT SETS

1. Take one transition t that is enabled in s. Let T = ftg.

2. For all transitions t in T , add to T all transitions t

0

such that

(a) t and t

0

are in conict; or

(b) t and t

0

are parallel and 9op 2 used(t); 9op

0

2 used(t

0

) : op and op

0

can-be-dependent.

3. Repeat step 2 until a disabled transition is introduced in T , or until no more tran-

sitions need be added. If there is a disabled transition in T , return the set of all

enabled transitions (this algorithm was not able to compute a nontrivial persistent

set). Else, return the set T .

Figure 4.2: Algorithm 1

4.3 Algorithm 1 (Conicting Transitions)

The simplest algorithm for computing persistent sets in a state s is certainly the one

that merely computes the set of all transitions that are enabled in s. Indeed, as pointed

out in the Section 4.1, this set is trivially persistent in s. Of course, the state space A

R

explored by a selective search using such an algorithm is then exactly the global state

space A

G

, which is precisely what we want to avoid.

A simple algorithm for computing nontrivial persistent sets, adapted from [GW91b,

GW93], is given in Figure 4.2. This algorithm uses the following de�nitions.

De�nition 4.4 Two transitions t

1

and t

2

are said to be in conict i� (pre(t

1

)\pre(t

2

)) 6=

; (there exists a process P

i

that is active for both t

1

and t

2

, and such that P

i

can choose

between t

1

and t

2

from its local state (pre(t

1

) \ pre(t

2

) \ P

i

)).

De�nition 4.5 Two transitions t

1

and t

2

are said to be parallel i� (active(t

1

)\active(t

2

)) =

; (the set of processes that are active for t

1

is disjoint from the set of processes that are

active for t

2

).

In practice, checking whether two transitions are in conict or parallel is a direct syntactic

check.

De�nition 4.6 Two operations op

1

and op

2

on a same object can-be-dependent if there

exists a state s in S such that op

1

and op

2

are dependent in s.

4.3. ALGORITHM 1 (CONFLICTING TRANSITIONS) 45

(Remember that S is the set of states of the LFCS and that S includes all states in A

G

.)

In practice, a relation \can-be-dependent" between operations on a given object is easily

obtained from the dependency relation between these operations.

The algorithm of Figure 4.2, let us call it Algorithm 1, starts by taking arbitrarily a

transition t that is enabled in the current state s (step 1). To build a persistent set T

containing t, all transitions that could \interfere" with t have to be included in T . For

this reason, transitions that are in conict with t, and transitions that are parallel and

that use operations that can-be-dependent with operations used by t are introduced into

T (step 2). Step 2 is repeated until a disabled transition is introduced into T , or until

no more transitions need be added (step 3). Then, if all transitions in T are enabled in

s, T is returned. Else, Algorithm 1 was not able to compute a nontrivial persistent set.

We now prove that Algorithm 1 computes persistent sets.

Theorem 4.7 Any set of transitions that is returned by Algorithm 1 is a persistent set

in the current state s.

Proof:

Let T

0

be a set of transitions that is returned by Algorithm 1, and let T denote the set

of transitions that have been considered in step 2 of the algorithm during this run. If T

contains a disabled transition, T

0

is the set of all enabled transitions in s, and is trivially

persistent in s. Else, T

0

= T , and T contains exclusively enabled transitions.

Suppose that T is not persistent in s. Thus, by De�nition 4.1, there exists in A

G

a

sequence s = s

1

t

1

! s

2

t

2

! s

3

: : :

t

n�1

! s

n

t

n

! s

n+1

of transitions t

1

; t

2

; : : : ; t

n

62 T , such that

t

n

is dependent in s

n

with some transition t 2 T . Consider the shortest such a sequence.

For this sequence, not only t

n

is dependent in s

n

with some transition t 2 T , but also,

for all 1 � i < n, t

i

is independent in s

i

with all transitions in T . Let us show that such

a sequence cannot exist.

Assume that t and t

n

are in parallel. We know from De�nition 3.21 that a su�cient

syntactic condition for two transitions t and t

n

to be independent in a state s

n

is that they

are parallel and 8op

1

2 used(t) and 8op

2

2 used(t

n

), if op

1

and op

2

are two operations

on a same object, then op

1

and op

2

are independent in s

n

. Since t and t

n

are dependent

in s

n

, this implies that 9op 2 used(t);9op

0

2 used(t

n

) : op and op

0

are dependent in s

n

.

Consequently, op and op

0

can-be-dependent according to De�nition 4.6. Hence, by step

2.b of the algorithm, t

n

has to be included in T . If t

n

is disabled in s, this contradicts

our assumption that T contains exclusively enabled transitions. If t

n

is enabled in s, this

contradicts the assumption that t

n

62 T . Therefore, we conclude that t and t

n

are not

parallel.

46 CHAPTER 4. PERSISTENT SETS

Since t and t

n

are not parallel, by De�nition 4.5, there exists at least one process P

i

that is active for both transitions t and t

n

: P

i

2 (active(t)\ active(t

n

)). Let s(i) denote

the local state of process P

i

in s (i.e., the ith component of s), and let s

n

(i) be the local

state of P

i

in s

n

. Since t is enabled in s and P

i

2 active(t), s(i) 2 pre(t). Moreover, since

t

n

is enabled in s

n

and P

i

2 active(t

n

), s

n

(i) 2 pre(t

n

). If t and t

n

are in conict, t

n

has

to be included in set T by step 2.a of the algorithm, which yield a contradiction with the

assumption that T contains exclusively enabled transitions and t

n

62 T . Hence, t and t

n

are not in conict. Since t and t

n

are not in conict, we know that (pre(t)\pre(t

n

)) = ;,

and thus s(i) 6= s

n

(i). This means that, after the execution of the sequence t

1

t

2

: : : t

n�1

,

process P

i

has moved from its local state s(i) to its local state s

n

(i). Hence, t is disabled

in s

n

(P

i

is not ready to execute t in s

n

). Consequently, there exists a transition t

k

,

1 � k < n, such that t is enabled in s

k

and disabled in s

k+1

. In other words, t and t

k

are

dependent in s

k

. This contradicts the assumption that for all 1 � i < n, t

i

62 T and t

i

is

independent in s

i

with all transitions in T .

Example 4.8 Consider a system containing two processes A = fa

0

; a

1

; a

2

g and B =

fb

0

; b

1

g, two objects x and y of type \boolean variable", and three transitions

t

1

= (a

0

; true; x := 1; a

1

), t

3

= (b

0

; true; y := 1; b

1

),

t

2

= (a

1

; true; y := 0; a

2

).

Consider the state s = (a

0

; b

0

; 0; 0) 2 A � B � V

x

� V

y

. In state s, both transitions t

1

and t

3

are enabled, and a classical search will therefore execute both of them. However,

transition t

1

is not in conict with any other transition. Moreover, t

1

uses only a Write

operation on object x, which cannot be accessed by transitions that are parallel with t

1

(object x is \local" to process A). Therefore, running Algorithm 1 with t

1

as the initial

enabled transition taken in step 1 of the algorithm returns ft

1

g. Thus, a persistent-set

selective search using Algorithm 1 may only execute transition t

1

from state s.

Step 1 of Algorithm 1 is nondeterministic: a transition t that is enabled in s is arbi-

trarily chosen to start the persistent set construction. For a given state s, let Algo

1

(t)

denote the persistent set that is returned by Algorithm 1 when t is the enabled transition

chosen in step 1 of the algorithm. Assume that, from any transition t, it takes O(1) time

to obtain a transition t

0

satisfying either condition 2.a or 2.b.

1

Since Algorithm 1 stops

(step 3) as soon as a disabled transition is introduced in T , step 2 can be executed at most

jenabled(s)j times, where jenabled(s)j denotes the number of transitions that are enabled

in s. For the same reason, each time step 2 is executed, at most jenabled(s)j transitions t

0

1

This can be done by using appropriate data structures to encode the relationships between transitions

according to conditions 2.a and 2.b.

4.4. ALGORITHM 2 (OVERMAN'S ALGORITHM) 47

can be checked and be added to set T . Hence, the worst-case time complexity of Algo

1

(t)

is O(jenabled(s)j

2

).

Let PS

1

(s) denote the set of persistent sets in a state s that can be computed by

Algorithm 1: PS

1

(s) = fAlgo

1

(t)jt 2 enabled(s)g. In practice, for a given state s, it

may be useful to run Algorithm 1 several times with di�erent initial enabled transitions

(step 1) in order to compute several persistent sets in s, and then to choose the smallest

persistent set that has been obtained. However, given the symmetry of the relation

between t and t

0

in step 2 of Algorithm 1, it is easy to see that, if Algo

1

(t) did not

encounter any disabled transitions, we have

8t

0

2 Algo

1

(t) : Algo

1

(t

0

) = Algo

1

(t):

Hence, once Algo

1

(t) has been computed, it is useless to compute Algo

1

(t

0

) with t

0

2

Algo

1

(t), i.e., to rerun Algorithm 1 with t

0

as the starting transition, when the compu-

tation of Algo

1

(t) did not encounter any disabled transitions. Moreover, we also know

that the computation of Algo

1

(t

0

) with t

0

62 Algo

1

(t) will not consider again transitions in

Algo

1

(t). Therefore, the worst-case time complexity to compute the smallest persistent

set in PS

1

(s), let us denote it by min(PS

1

(s)), is also O(jenabled(s)j

2

).

Note 4.9 Algorithm 1 is equivalent to an algorithm that appeared in [GW91b, GW93].

In [GW91b, GW93], concurrent systems were represented by a set of communicating

automata, i.e., a parallel composition of sequential processes (no objects). For the par-

ticular model and de�nition of dependency used in [GW91b, GW93], two transitions

that are parallel cannot be dependent, and step 2 of Algorithm 1 reduces to point 2.a

only, point 2.b can be deleted. It is pointed out in [GW91b, GW93] that Algorithm 1

can be implemented in such a way that its time complexity is the same as the one of

the computation of the set of all the transitions that are enabled in s, by interleaving

both computations, instead of computing �rst the set of enabled transitions as implic-

itly assumed in the above discussion. Finally note that the procedure given in page 420

of [Pel93] is similar to Algorithm 1.

4.4 Algorithm 2 (Overman's Algorithm)

A more elaborate algorithm for computing nontrivial persistent sets is given in Fig-

ure 4.3. Let us call it Algorithm 2. This algorithm is an adaptation of an algorithm

that appeared in [Ove81]. The algorithm presented in [Ove81] (page 105) only con-

sidered concurrent systems composed of \non-cycling" (no loops) and \non-branching"

processes communicating exclusively via shared variables. Thus, the correspondence be-

tween Algorithm 2 and the one of [Ove81] might seem rather loose. However, the basic

algorithmic idea is the same.

48 CHAPTER 4. PERSISTENT SETS

1. Take one transition t that is enabled in s. Let P = active(t).

2. For all processes P

i

in P , for all transitions t such that s(i) 2 pre(t), add to P all

processes P

j

such that

(a) P

j

2 active(t); or

(b) P

j

2 active(t

0

) for some t

0

such that t and t

0

are parallel and

9op 2 used(t); 9op

0

2 used(t

0

) : op and op

0

can-be-dependent.

3. Repeat step 2 until no more processes need be added. Then, return all transitions t

such that active(t) � P and t is enabled in s.

Figure 4.3: Algorithm 2

Unlike Algorithm 1, Algorithm 2 can consider disabled transitions, and uses informa-

tion about processes. More precisely, it uses information about which transitions can be

accessed by process P

i

from its current local state s(i). Algorithm 2 starts by considering

the set P of processes that are active for one given enabled transition (step 1). Then,

for all transitions t \originating from" the current local state s(i) of a process P

i

in set

P , i.e., for all transitions t such that s(i) 2 pre(t), all other processes that are active for

t, or that are active for a transition t

0

that is parallel and that uses operations that can-

be-dependent with operations used by t, are added to set P (step 2). Step 2 is repeated

until no more processes need be added to P (step 3). Finally, all enabled transitions for

which processes in P are active are returned.

We now prove that Algorithm 2 computes persistent sets.

Theorem 4.10 Any set of transitions that is returned by Algorithm 2 is a persistent set

in the current state s.

Proof:

Let T be a set of transitions that is returned by Algorithm 2, and let P denote the

set of processes that have been considered in step 2 of the algorithm during this run.

The proof is by contradiction. Suppose that T is not persistent in s. Thus, by

De�nition 4.1, there exists in A

G

a sequence s = s

1

t

1

! s

2

t

2

! s

3

: : :

t

n�1

! s

n

t

n

! s

n+1

of

transitions t

1

; t

2

; : : : ; t

n

62 T , such that t

n

is dependent in s

n

with some transition t 2 T .

Consider the shortest such a sequence. For this sequence, not only t

n

is dependent in s

n

with some transition t 2 T , but also, for all 1 � i < n, t

i

is independent in s

i

with all

transitions in T . Let us show that such a sequence cannot exist.

4.4. ALGORITHM 2 (OVERMAN'S ALGORITHM) 49

Assume that t and t

n

are in parallel. We know from De�nition 3.21 that a su�cient

syntactic condition for two transitions t and t

n

to be independent in a state s

n

is that they

are parallel and 8op

1

2 used(t) and 8op

2

2 used(t

n

), if op

1

and op

2

are two operations

on a same object, then op

1

and op

2

are independent in s

n

. Since t and t

n

are dependent

in s

n

, this implies that 9op 2 used(t);9op

0

2 used(t

n

) : op and op

0

are dependent in s

n

.

Consequently, op and op

0

can-be-dependent according to De�nition 4.6. Hence, by step

2.b of the algorithm, we have active(t

n

) � P .

Now, assume that t and t

n

are not parallel. By De�nition 4.5, there exists at least

one process P

i

that is active for both transitions t and t

n

: P

i

2 (active(t)\ active(t

n

)).

Note that, since t 2 T , active(t) � P , and thus P

i

2 P . Let s(i) denote the local state

of process P

i

in s (i.e., the ith component of s), and let s

n

(i) be the local state of P

i

in

s

n

. Since t

n

is enabled in s

n

and P

i

2 active(t

n

), s

n

(i) 2 pre(t

n

). If s(i) = s

n

(i), by step

2.a of the algorithm, we have again active(t

n

) � P .

Consider the case where s(i) 6= s

n

(i). Since t is in T , t is enabled in s, and s(i) 2 pre(t).

Since s(i) 6= s

n

(i), t is disabled in s

n

(P

i

is not ready to execute t in s

n

). Consequently,

there exists a transition t

k

, 1 � k < n, such that t is enabled in s

k

and disabled in s

k+1

.

In other words, t and t

k

are dependent in s

k

. This contradicts the assumption that for

all 1 � i < n, t

i

62 T and t

i

is independent in s

i

with all transitions in T .

In summary, we have active(t

n

) � P . If t

n

is enabled in s, t

n

is in the set T returned

by the algorithm, which contradicts the assumption that t

n

62 T . Therefore, t

n

is disabled

in s.

Since t

n

is disabled in s and enabled in s

n

, there exists a transition t

k

, 1 � k < n, such

that t

n

is disabled in s

k

and enabled in s

k+1

. In other words, t

n

and t

k

are dependent in

s

k

. If, for all transitions t

l

, 1 � l < n, (active(t

l

)\active(t

n

)) = ;, we have s(i) 2 pre(t

n

)

for all P

i

2 active(t

n

), and active(t

k

) � P by step 2.b of the algorithm (1). Else, there

exists a transition t

l

, 1 � l < n, such that P

i

2 active(t

n

) and P

i

2 active(t

l

). Let t

l

be the �rst such transition in the sequence t

1

t

2

: : : t

n�1

. We have s(i) = s

l

(i) since t

l

is

the �rst transition in the sequence t

1

t

2

: : : t

n�1

for which P

i

is active. Since t

l

is enabled

in s

l

, s

l

(i) 2 pre(t

l

). Since active(t

n

) � P , we have P

i

2 P , and active(t

l

) � P by step

2.a of the algorithm (2). In summary, in both cases (1) and (2), there exists a transition

t

m

, 1 � m < n such that active(t

m

) � P . If t

m

is enabled in s, it is returned by the

algorithm and is thus in T , which contradicts the assumption that t

m

62 T . Therefore,

t

m

is disabled in s.

By repeating the same reasoning, one comes to the conclusion that active(t

1

) � P .

Since t

1

is enabled in s, this means that t

1

2 T , which contradicts the assumption that

t

1

; : : : ; t

n

62 T .

Example 4.11 Consider a system containing two processes A = fa

0

; a

1

; a

2

; a

3

g and

50 CHAPTER 4. PERSISTENT SETS

B = fb

0

; b

1

g, two objects x and y of type \boolean variable", and four transitions

t

1

= (a

0

; true; x := 1; a

1

), t

4

= (b

0

; true; y := 1; b

1

);

t

2

= (a

0

; x = 1; x := 0; a

3

),

t

3

= (a

1

; true; y := 0; a

2

).

Consider the state s = (a

0

; b

0

; 0; 0) 2 A�B�V

x

�V

y

. In state s, both transitions t

1

and

t

4

are enabled, and a classical search will therefore execute both of them. Since transition

t

1

is in conict with transition t

2

which is disabled in s, Algo

1

(t

1

) = ft

1

; t

4

g. However,

Algorithm 2 starting with t

1

as the initial enabled transition taken in step 1 introduces

process A in set P . Then, it checks in step 2 if other processes have to be added to P .

Since the only process that is active for the two transitions t

1

and t

2

originating from a

0

is A, and since these two transitions only use object x, which is not used by transitions

that are parallel with t

1

or t

2

, process B does not need be included in P . Therefore,

Algorithm 2 returns ft

1

g, and a persistent-set selective search using Algorithm 2 may

only execute transition t

1

from state s.

As in Algorithm 1, step 1 of Algorithm 2 is nondeterministic. For a given state s, let

Algo

2

(t) denote the persistent set that is returned by Algorithm 2 when t is the enabled

transition chosen in step 1 of the algorithm. Step 2 of Algorithm 2 can be executed at

most jPj times, where jPj is the number of processes in the system. Each time step 2

is executed, at most jPj processes P

j

can be added to set P . If we assume that, from

any process P

i

, it takes O(1) time to obtain a process P

j

satisfying either condition 2.a

or 2.b

2

, the worst-case time complexity for executing step 2 of Algorithm 2 is O(jPj

2

),

and, assuming jenabled(s)j smaller than jPj

2

, the worst-case time complexity of Algo

2

(t)

is also O(jPj

2

).

Let PS

2

(s) denote the set of persistent sets in a state s that can be computed by

Algorithm 2: PS

2

(s) = fAlgo

2

(t)jt 2 enabled(s)g. It is easy to see that

8t

0

2 Algo

2

(t) : Algo

2

(t

0

) � Algo

2

(t):

Therefore, it may be useful to rerun Algorithm 2 with transitions t

0

taken from a persistent

set already obtained by a previous run, to determine if this persistent set contains another

smaller persistent set. We will come back to this issue at the end of the next Section.

2

This can be done by using appropriate data structures to encode the relationships between processes

according to conditions 2.a and 2.b. For instance, for all possible local states s(i) of each process P

i

,

a table that tells which processes have to be included in set P when P

i

is in its local state s(i) can be

computed at compile time.

4.5. ALGORITHM 3 (STUBBORN SETS) 51

4.5 Algorithm 3 (Stubborn Sets)

4.5.1 Basic Idea

Yet a more elaborate technique for computing persistent sets is the stubborn set technique

of Valmari [Val91]. Unlike Algorithm 2, the stubborn set technique also uses information

about the internal structure of the processes of the system. Before de�ning stubborn

sets, we need the following de�nition [Val91].

De�nition 4.12 Two transitions t

1

and t

2

do-not-accord with each other if there exists

a state s in S such that t

1

and t

2

are enabled in s and are dependent in s.

Two transitions do-not-accord with each other if there exists a state where they are both

enabled and dependent. We can de�ne a similar relation on operations on objects.

De�nition 4.13 Two operations op

1

and op

2

on the same object do-not-accord with

each other if there exists a state s in S such that op

1

and op

2

are de�ned in s and are

dependent in s.

This de�nition is slightly weaker than De�nition 4.6, i.e., the relation do-not-accord is

included in the relation can-be-dependent. Indeed, two operations that do-not-accord

can-be-dependent, while the converse does not hold, since two operations that are de-

pendent in a state s need not be both de�ned in that state. In practice, a relation

\do-not-accord" between operations on a given object is easily obtained from the depen-

dency relation between these operations.

We now introduce a new de�nition that will help us to capture the basic algorithmic

idea of stubborn sets without referring to a particular model for representing concurrent

systems.

De�nition 4.14 Let t be a transition that is disabled in a state s. A necessary enabling

set for t in s, denoted NES(t; s), is a set of transitions such that, for all states s

0

such

that t is enabled in s

0

, for all sequences w of transitions from s to s

0

in A

G

, w contains

at least one transition of NES(t; s).

In other words, a necessary enabling set NES(t; s) for t in s is a set of transitions such

that t cannot become enabled (in some successor s

0

of s in A

G

) before at least one

transition in NES(t; s) is executed.

Stubborn sets

3

can then be de�ned as follows (adapted from [Val91]; see also Note 4.17

below).

3

\Strong stubborn sets" according to Valmari's terminology. \Weak stubborn sets" will be considered

later.

52 CHAPTER 4. PERSISTENT SETS

De�nition 4.15 A set T

s

of transitions is a stubborn set in a state s if T

s

contains at

least one enabled transition, and if for all transitions t 2 T

s

, the two following conditions

hold:

1. if t is disabled in s, then all transitions in one necessary enabling set NES(t; s) for

t in s are also in T

s

;

2. if t is enabled in s, then all transitions t

0

that do-not-accord with t are also in T

s

.

A stubborn set T

s

in a state s is thus a set of transitions. Transitions in this set can be

either enabled or disabled in s. Let T be the set of all transitions in T

s

that are enabled

in s. By the de�nition of T

s

, T is nonempty. We now prove that T is a persistent set in

s.

Theorem 4.16 Let T be the set of all transitions in a stubborn set T

s

in state s that are

enabled in s. Then, T is a persistent set in s.

Proof:

The proof is by contradiction. Suppose that T is not persistent in s. Thus, by

De�nition 4.1, there exists in A

G

a sequence s = s

1

t

1

! s

2

t

2

! s

3

: : :

t

n�1

! s

n

t

n

! s

n+1

of

transitions t

1

; t

2

; : : : ; t

n

62 T , such that t

n

is dependent in s

n

with some transition t 2 T .

Consider the shortest such a sequence. For this sequence, not only t

n

is dependent in s

n

with some transition t 2 T , but also, for all 1 � i < n, t

i

is independent in s

i

with all

transitions in T . Let us show that such a sequence cannot exist.

Since t 2 T , t 2 T

s

and t is enabled in s. Since, for all 1 � i < n, t

i

is independent in

s

i

with all transitions in T , including t, t remains enabled in all states s

i+1

. Since t and t

n

are both enabled in s

n

and are dependent in s

n

, they do-not-accord (cf. De�nition 4.12),

and t

n

is in T

s

by point 2 of De�nition 4.15.

If t

n

is enabled in s, then we have t

n

2 T , which contradicts the assumption that

t

1

; : : : ; t

n

62 T . Thus, t

n

is disabled in s. Since t

n

is enabled in s

n

, there exists a

nonempty necessary enabling set NES(t

n

; s) for t

n

in s, and (at least) one transition t

j

,

1 � j < n, is in NES(t

n

; s) (cf. De�nition 4.14). By point 1 of De�nition 4.15, t

j

is

in T

s

. Again, if t

j

is enabled in s, then t

j

2 T , which contradicts the assumption that

t

1

; : : : ; t

n

62 T . Thus, t

j

is disabled in s. By repeating the same reasoning, one comes to

the conclusion that t

1

is in T

s

. Since t

1

is enabled in s, this means that t

1

2 T , which

contradicts the assumption that t

1

; : : : ; t

n

62 T .

Stubborn sets can thus be used to compute persistent sets: by taking all transitions

in a stubborn set T

s

that are enabled in s, one obtains a persistent set.

4.5. ALGORITHM 3 (STUBBORN SETS) 53

Note 4.17 The basic algorithmic idea of stubborn sets is captured by De�nition 4.15

introduced in this Section. This de�nition is general, abstract, in the sense that it is inde-

pendent of any particular model. In contrast, de�nitions of stubborn sets that appeared

in the literature were tailored for particular models like Variable/Transition Systems,

Elementary Nets, Place/Transition Nets, Coloured Petri Nets, etc (e.g., see [Val91]). All

these particular de�nitions can be viewed as \implementations" of the general de�nition

we have given in this Section. Algorithm 3 that will be presented in the next Section is

such an \implementation" of De�nition 4.15 for systems represented by LFCS's.

4.5.2 Algorithm

From the general de�nition of stubborn sets given above, it is possible to obtain an algo-

rithm for computing stubborn sets T

s

for systems represented by LFCS's. To obtain such

an \implementation", we need to give a practical way to compute (and thus approximate)

the concepts that appear in De�nition 4.15.

The resulting algorithm, Algorithm 3, is presented in Figure 4.4. Algorithm 3 starts by

taking a transition t that is enabled in s (step 1). To compute a stubborn set containing

t, the two rules 2.a and 2.b are applied repeatedly to all transitions introduced in T

s

(step

2) until no more transitions need be added (step 3). Then, all the transitions in the T

s

that are enabled in s are returned, the other transitions in T

s

are discarded.

To prove that Algorithm 3 returns persistent sets in s, thanks to Theorem 4.16, it is

su�cient to show that the sets T

s

that it computes are stubborn sets in s according to

De�nition 4.15. To show this, we have to prove that the rules 2.a and 2.b are safe ap-

proximations of respectively point 1 and 2 of De�nition 4.15, i.e., that enough transitions

are included in set T

s

by Algorithm 3 to make it a stubborn set in s .

Theorem 4.18 All sets T

s

that are computed by Algorithm 3 are stubborn sets in s.

Proof:

Let T

s

be a set of transitions that is computed by Algorithm 3. Let us show that T

s

is a stubborn set in s.

Consider a transition t 2 T

s

that is disabled in s. With our LFCS model, a transition

t = (L;G;C;L

0

) is disabled in a state s if either there is a process P

j

2 active(t) such that

s(j) 6= (L \ P

j

) (process P

j

that is active for t is not ready to execute transition t from

its current local state s(j)), or there is a condition c

j

in the conjunction G that evaluates

to false in s. In the �rst case, the set of all transitions t

0

such that (pre(t)\P

j

) 2 post(t

0

)

is a necessary enabling set NES(t; s) for t in s (the execution of such a transition t

0

is

necessary to make t enabled). In the second case, the set of all transitions t

0

that use

54 CHAPTER 4. PERSISTENT SETS

1. Take one transition t that is enabled in s. Let T

s

= ftg.

2. For all transitions t in T

s

:

(a) if t is disabled in s, either:

i. choose a process P

j

2 active(t) such that s(j) 6= (pre(t) \ P

j

); then, add to T

s

all transitions t

0

such that (pre(t) \ P

j

) 2 post(t

0

).

ii. choose a condition c

j

in the guard G of t that evaluates to false in s; then,

for all operations op used by t to evaluate c

j

, add to T

s

all transitions t

0

such

that 9op

0

2 used(t

0

) : op and op

0

can-be-dependent.

(b) if t is enabled in s, add to T

s

all transitions t

0

such that

i. t and t

0

are in conict; or

ii. t and t

0

are parallel and 9op 2 used(t); 9op

0

2 used(t

0

) : op and op

0

do-not-accord.

3. Repeat step 2 until no more transitions need be added. Then, return all transitions

in T

s

that are enabled in s (transitions in T

s

that are disabled in s are discarded).

Figure 4.4: Algorithm 3

an operation op

0

that can-be-dependent with an operation op used to evaluate c

j

is a

necessary enabling set NES(t; s) for t in s (only the execution of such an operation op

0

can change the output returned by op, and hence the truth value of c

j

).

Consider a transition t 2 T

s

that is enabled in s. We have to show that the set of

all transitions t

0

that are added to T

s

by step 2.b of Algorithm 3 includes all transitions

that do-not-accord with t. Consider a transition t

0

such that t and t

0

do-not-accord. Let

us show that t

0

is in T

s

.

If t and t

0

are not parallel, this implies by De�nition 4.5 that at least one process

is active for both transitions t and t

0

: P

i

2 (active(t) \ active(t

0

)). If t and t

0

are in

conict, t

0

is added to T

s

by step 2.b.i. If t and t

0

are not in conict, we know that

(pre(t) \ pre(t

0

)) = ;. Therefore, (pre(t) \ P

i

) 6= (pre(t

0

) \ P

i

), and it is impossible for

t and t

0

to be simultaneously enabled (process P

i

cannot be in two di�erent local states

(pre(t)\P

i

) and (pre(t

0

)\P

i

) at the same time), which contradicts the assumption that

t and t

0

do-not-accord.

Assume now that t and t

0

are parallel. Since t and t

0

do-not-accord, there exists a

state s

0

2 S where t and t

0

are enabled in s

0

and are dependent in s

0

, by De�nition 4.12.

Moreover, we know from De�nition 3.21 that a su�cient syntactic condition for two

transitions t and t

0

to be independent in a state s

0

is that they are parallel and 8op

1

2

used(t) and 8op

2

2 used(t

0

), if op

1

and op

2

are two operations on a same object, then

4.5. ALGORITHM 3 (STUBBORN SETS) 55

op

1

and op

2

are independent in s

n

. Since t and t

0

are dependent in s

0

, this implies that

9op 2 used(t);9op

0

2 used(t

0

) : op and op

0

are dependent in s

0

. Moreover, since t and t

0

are enabled in s

0

, this implies that both op and op

0

are de�ned in s

0

. Consequently, op and

op

0

do-not-accord according to De�nition 4.13. Hence, by step 2.b.ii of the algorithm, t

0

is included in T

s

.

Example 4.19 Consider a system containing two processes A = fa

0

; a

1

; a

2

g and B =

fb

0

; b

1

g, two objects x and y of type \boolean variable", and four transitions

t

1

= (a

0

; true; x := 1; a

1

), t

3

= (b

0

; true; y := 1; b

1

),

t

2

= (a

1

; true; y := 0; a

2

), t

4

= (b

1

; true; x := 0; b

0

).

Consider the state s = (a

1

; b

1

; 0; 0) 2 A�B�V

x

�V

y

. In state s, both transitions t

2

and

t

4

are enabled. As an exercice, the reader can compute what the persistent sets that can

be returned by Algorithms 1 and 2 are. Actually, Algo

1

(t

2

) = Algo

1

(t

4

) = Algo

2

(t

2

) =

Algo

2

(t

4

) = ft

2

; t

4

g. In other words, neither Algorithm 1, nor Algorithm 2 are able to

return a nontrivial persistent set for this example. Let us investigate how Algorithm 3,

in contrast, is able to determine that ft

4

g is a persistent set in s. Starting with t

4

as

the initial enabled transition taken in step 1, Algorithm 3 has to include transition t

1

in

T

s

by step 2.b since both t

4

and t

1

use a Write operation on object x, and since two

Write operations do-not-accord (they are always de�ned and dependent; cf. Sections 2.1

and 3.4). Since t

1

is disabled in s, and since the only condition for which it is disabled

in s is that process A, which is active for it, is not ready to execute it, step 2.b.i adds

to T

s

all transitions t

0

such that a

0

2 post(t

0

). There are no such transitions, and the

computation of T

s

stops. Hence, Algo

3

(t

4

) = ft

4

g, and a persistent-set selective search

using Algorithm 3 may only execute transition t

4

from state s.

As in Algorithms 1 and 2, step 1 of Algorithm 3 is nondeterministic. For a given

state s, let Algo

3

(t) denote a persistent set that is returned by Algorithm 3 when t is the

enabled transition chosen in step 1 of the algorithm. During the computation of Algo

3

(t),

Step 2 of Algorithm 3 can be executed at most jT j times, where jT j is the number of

transitions in the system. Each time step 2 is executed, at most jT j transitions t

0

can be

checked and be added to set T

s

. If we assume that, from any transition t, it takes O(1)

time to obtain a transition t

0

satisfying either condition 2.a or 2.b, the worst-case time

complexity of Algo

3

(t) is O(jT j

2

).

Note that point 1 of De�nition 4.15, and hence step 2.a of Algorithm 3, are also

nondeterministic: one can choose arbitrarily any necessary enabling set NES(t; s) for t

in s, and then add to T

s

all transitions in this set NES(t; s). Therefore, the choice of

a NES(t; s) inuences the set of transitions that have to be added to T

s

, and thus the

56 CHAPTER 4. PERSISTENT SETS

size of T

s

and the number of enabled transitions it contains. A priori, it is not possible

to predict what choice will yield the smallest persistent set. In other words, executing

Algorithm 3 several times with the same starting enabled transition taken in step 1 of

the algorithm may return di�erent persistent sets, if di�erent choices of NES(t; s) are

made for disabled transitions in T

s

.

To avoid redundant work during successive executions of Algorithm 3 when searching

for a minimal persistent set, a systematic approach, investigated in [Val88a, Val88b],

consists in viewing each transition in T as a vertex of a directed graph, and each relation

of the form \if t is in T

s

, then add t

0

to T

s

" according to step 2.a or 2.b as an edge

from vertex t to vertex t

0

. The problem of �nding the smallest persistent set that can

be computed by Algorithm 3 is then reduced to a graph-theoretic problem. In [Val88b],

it is shown that the problem can be solved in O(jT j

3

j). If the nondeterminism of step

2.a of Algorithm 3 is resolved in a unique way for each disabled transition, then the time

complexity becomes linear in the number of edges in the graph, i.e., O(jT j

2

j) [Val88a].

4

Interestingly, it can be shown that the same technique can be applied to �nd the

smallest persistent set that can be computed by Algorithm 2 (since the only nondeter-

ministic step in Algorithm 2 is step 1): each process is viewed as a vertex of a directed

graph, and each relation \if P

i

is in P , then add P

j

to P" according to step 2.a or 2.b of

Algorithm 2 corresponds to an edge from vertex P

i

to vertex P

j

. The time complexity

for computing the smallest persistent set in PS

2

(s), i.e., the set of persistent sets that

can be computed by Algorithm 2, is thus O(jPj

2

).

4.6 Comparison

In this Section, we compare the persistent sets that can be computed by the three algo-

rithms presented in the previous Sections.

For a given state s, letAlgo

i

(t) denote the persistent set that is returned by Algorithm i

when t is the enabled transition chosen in step 1 of Algorithm i, for i 2 f1; 2g. We can

prove the following.

Theorem 4.20 For all transitions t that are enabled in a state s, we have Algo

2

(t) �

Algo

1

(t).

4

If for all transitions t, the number of transitions t

0

that satisfy either point 1 or point 2 of Def-

inition 4.15 is bounded by a constant C < jT j, the time complexity of the two algorithms becomes

O(CjT j

2

) and O(CjT j) respectively, as assumed in [Val88a, Val88b].

4.6. COMPARISON 57

Proof:

If Algo

1

(t) is the set of all transitions that are enabled in s, the result is immediate.

Thus, assume this is not the case. This means that the set T of transitions constructed

in step 2 of Algorithm 1 during the computation of Algo

1

(t) contains only enabled tran-

sitions, and we have Algo

1

(t) = T . Let P denote the set of processes that have been

considered in step 2 of Algorithm 2 during the computation of Algo

2

(t). Let T

2

s

be the

set ft j9P

i

2 P : s(i) 2 pre(t)g. By construction, Algo

2

(t) is the set of all transitions in

T

2

s

that are enabled in s. We now prove that, for all transitions t 2 T , if t 2 T

2

s

, then all

transitions t

0

that are added to T

2

s

because of t by step 2 of Algorithm 2 are in T .

If t

0

is added to T

2

s

because of t by step 2.a of Algorithm 2, this means that there

exists a process P

j

2 P such that P

j

2 active(t) and s(j) 2 pre(t

0

). Since t is enabled

in s, s(j) 2 pre(t), and t and t

0

are in conict. Consequently, t

0

is in T by step 2.a of

Algorithm 1.

If t

0

is added to T

2

s

because of t by step 2.b of Algorithm 2, this means that there

exists a process P

j

2 P such that s(j) 2 pre(t

0

) and P

j

2 active(t

00

) for some t

00

such that

t and t

00

are parallel and 9op 2 used(t);9op

0

2 used(t

00

) : op and op

0

can-be-dependent.

Consequently, by step 2.b of Algorithm 1, t

00

is in T . Hence, t

00

is enabled in s, and we

have s(j) 2 pre(t

00

). This implies that t

00

is in T

2

s

. This also implies that t

00

and t

0

are in

conict, and t

0

is in T by step 2.a of Algorithm 1.

We have just proved that, for all transitions t 2 T , if t 2 T

2

s

, then all transitions that

are added to T

2

s

because of t by step 2 of Algorithm 2 are in T . Consequently, T

2

s

� T ,

and thus Algo

2

(t) � Algo

1

(t).

Thus, the persistent set Algo

2

(t) returned by Algorithm 2 is always a subset (not

necessarily proper) of the persistent set Algo

1

(t) returned by Algorithm 1.

A similar relation holds between Algorithm 2 and 3, except that, since step 2.a of Al-

gorithm 3 is nondeterministic, the formulation of the theorem has to be slightly modi�ed.

Theorem 4.21 For all transitions t that are enabled in a state s, there exists an execu-

tion of Algorithm 3 that returns a persistent set Algo

3

(t) such that Algo

3

(t) � Algo

2

(t).

Proof:

Let P denote the set of processes that have been considered in step 2 of Algorithm 2

during the computation of Algo

2

(t). Let T

2

s

be the set ft j9P

i

2 P : s(i) 2 pre(t)g. By

construction, Algo

2

(t) is the set of all transitions in T

2

s

that are enabled in s. If T

s

is

a stubborn set constructed by Algorithm 3 during the computation of a persistent set

Algo

3

(t), let T

3

s

denote the transitions t in T

s

such that 9P

i

: s(i) 2 pre(t). In other

words, T

3

s

contains all transitions (enabled or disabled) in T

s

that are originating from

58 CHAPTER 4. PERSISTENT SETS

the current local state of some process (not necessarily in P). Note that all transitions

in T

s

that are enabled in s are in T

3

s

. Moreover, transitions that are in T

s

and in T

2

s

are

in T

3

s

. To prove the theorem, we show that there exists a run of Algorithm 3 such that

all enabled transitions in T

3

s

are in T

2

s

. This amounts to constructing a set T

3

s

such that,

for all transitions t 2 T

2

s

, if t 2 T

3

s

, then all enabled transitions that are added to T

3

s

because of t by (possibly several applications of) step 2 of Algorithm 3 are in T

2

s

.

Consider a transition t 2 T

3

s

that is enabled in s. Since t is in T

2

s

, we know active(t)�

P . If t

0

is added to T

s

because of t by step 2.b.i of Algorithm 3, this means that t and

t

0

are in conict. Hence, there exists a process P

i

active for t such that s(i) 2 pre(t

0

).

Since P

i

2 P , t

0

is in T

2

s

, by de�nition of T

2

s

. Moreover, since t

0

is in both T

s

and T

2

s

, it

is also in T

3

s

.

If t

0

is added to T

s

because of t by step 2.b.ii of Algorithm 3, this means that t and

t

0

are parallel and 9op 2 used(t);9op

0

2 used(t

0

) : op and op

0

do-not-accord. Thus, op

and op

0

can-be-dependent, since the relation do-not-accord is included in the relation

can-be-dependent. Consequently, by step 2.b of Algorithm 2, the processes in active(t

0

)

are in P . If there is a process P

i

such that s(i) 2 pre(t

0

), t

0

is in T

2

s

. If for all processes

P

i

in active(t

0

), s(i) 62 pre(t

0

), t

0

is disabled in s and is neither in T

2

s

, nor in T

3

s

. Let P

i

be one of the processes active for t

0

. By applying repeatedly step 2.a.i of Algorithm 3

and choosing P

i

, a transition t

00

in T

2

s

may eventually be included in set T

s

. In this case,

intermediate transitions t

000

that are included in set T

s

during these successive applications

of step 2.a.i are all disabled in s, since they are not in T

2

s

(by construction), and hence

process P

i

, which is active for all these transitions, is not ready to execute any of them:

s(i) 62 pre(t

000

). Since t

00

is in both T

s

and T

2

s

, it is also in T

3

s

.

Consider a transition t 2 T

3

s

that is disabled in s. Since t is in T

2

s

, we know active(t)�

P . Two cases are possible. If there exists a process P

i

2 active(t) such that s(i) 6=

(pre(t) \ P

i

), one can choose process P

i

in step 2.a.i of Algorithm 3 and include all

transitions t

0

such that (pre(t) \ P

i

) 2 post(t

0

). Consider such a transition t

0

. If s(i) 2

pre(t

0

), t

0

is in T

2

s

since P

i

2 P (and also in T

3

s

, since t

0

2 T

s

). Else, t

0

is disabled in s

(process P

i

, which is active for t

0

, is not ready to execute t

0

) and is neither in T

2

s

, nor in

T

3

s

. By applying repeatedly step 2.a.i of Algorithm 3 and choosing P

i

, a transition t

00

in

T

2

s

may eventually be included in set T

s

. In this case, intermediate transitions t

000

that

are included in set T

s

during these successive applications of step 2.a.i are all disabled in

s, since they are not in T

2

s

(by construction), and hence process P

i

, which is active for

all these transitions, is not ready to execute any of them: s(i) 62 pre(t

000

). Since t

00

is in

both T

s

and T

2

s

, it is also in T

3

s

.

Now consider the second possible case where, for all processes P

i

active for t, we have

s(i) = (pre(t)\P

i

). Since t is disabled in s, there exists a condition c

j

in the guard G of

t that evaluates to false in s. Such a condition c

j

is chosen in step 2.a.ii of Algorithm 3,

4.6. COMPARISON 59

and all transitions t

0

such that 9op

0

2 used(t

0

) : op and op

0

can-be-dependent, where op

is an operation used by t to evaluate c

j

, are added to T

s

. Consider such a transition

t

0

. If t and t

0

are parallel, by step 2.b of Algorithm 2, all processes in active(t

0

) are in

P . If there is a process P

j

such that s(j) 2 pre(t

0

), t

0

is in T

2

s

(and in T

3

s

). If for all

processes P

j

in active(t

0

), s(j) 62 pre(t

0

), t

0

is disabled in s and is neither in T

2

s

, nor in

T

3

s

. Let P

j

be one of the processes active for t

0

. By applying repeatedly step 2.a.i of

Algorithm 3 and choosing P

j

, a transition t

00

in T

2

s

may eventually be included in set T

s

.

In this case, intermediate transitions t

000

that are included in set T

s

during these successive

applications of step 2.a.i are all disabled in s, since they are not in T

2

s

(by construction),

and hence process P

j

, which is active for all these transitions, is not ready to execute any

of them: s(j) 62 pre(t

000

). Since t

00

is in both T

s

and T

2

s

, it is also in T

3

s

.

Finally, if t and t

0

are not parallel, there exists a process P

j

active for both t and t

0

.

If s(j) 2 pre(t

0

), t

0

is in T

2

s

, and then is also in T

3

s

. Else, by applying repeatedly step

2.a.i of Algorithm 3 and choosing P

j

, a transition t

00

in T

2

s

may eventually be included in

set T

s

. In this case, intermediate transitions t

000

that are included in set T

s

during these

successive applications of step 2.a.i are all disabled in s, since they are not in T

2

s

(by

construction), and hence process P

j

, which is active for all these transitions, is not ready

to execute any of them: s(j) 62 pre(t

000

). Since t

00

is in both T

s

and T

2

s

, it is also in T

3

s

.

In conclusion, we have build a set T

3

s

such that, for all transitions t 2 T

2

s

, if t 2 T

3

s

, then

all enabled transitions that are added to T

3

s

because of t by (possibly several applications

of) step 2 of Algorithm 3 are in T

2

s

. Consequently, there exists an execution of Algorithm 3

that returns a persistent set Algo

3

(t) such that Algo

3

(t) � Algo

2

(t).

It follows from the two previous theorems that the smallest persistent set that can be

computed by Algorithm i can also be computed by Algorithm j with i < j, while the

converse is not true, as it has been shown with the examples in the previous Sections.

So far, we have presented three di�erent algorithms, which have been developed in-

dependently, and we have shown that they all compute persistent sets. Persistent sets

are thus a key notion underlying these algorithms though, maybe surprisingly, none

of [Ove81, GW91b, Val91] pointed this out.

It should be emphasized that persistent sets are really what we want to compute, while

the algorithms that we have presented (including the notion of stubborn sets) rather tell

us how to compute persistent sets. Making this distinction between \what" and \how" is

important. Indeed, once one clearly knows what one wants to obtain, i.e., persistent sets,

it is then possible to consider the problem of computing persistent sets from a broader

perspective. More precisely, it now makes sense to ask if there exist better algorithms

that could compute yet smaller persistent sets than the most elaborate technique we have

presented so far, i.e., the stubborn set technique.

60 CHAPTER 4. PERSISTENT SETS

The answer to this question is positive, and a new more re�ned algorithm to compute

smaller persistent sets is introduced in the next Section. (The key contributions of the

next Section appeared in [GP93].)

4.7 Algorithm 4 (Conditional Stubborn Sets)

4.7.1 Basic Idea

The only information about the current state that has been used in all the previous

algorithms for computing persistent sets is whether transitions are enabled or disabled

in that state. These algorithms did not use any other information about the current

state itself. Indeed, de�nitions like \can-be-dependent" or \do-not-accord" used by these

algorithms were de�ned with respect to all possible states in S. Therefore, using these

de�nitions can produce unnecessarily large persistent sets.

In this Section, we show how to improve the previous algorithms by using a less restric-

tive approach. This approach consists in considering only the states that are reachable

from the current state s and in taking advantage of conditional dependency.

We now give a new de�nition inspired by the stubborn set de�nition 4.15 that can be

used to compute smaller persistent sets. Unlike De�nition 4.15, the new de�nition takes

advantage of conditional dependency [GP93].

De�nition 4.22 A set T

s

of transitions is a conditional stubborn set in state s if T

s

contains at least one enabled transition, and if for all transitions t 2 T

s

, the following

condition holds:

for all sequences s = s

1

t

1

! s

2

t

2

! s

3

: : :

t

n�1

! s

n

t

n

! s

n+1

of transitions from s

in A

G

such that t and t

n

are dependent in s

n

, at least one of the t

1

; : : : ; t

n

is

also in T

s

.

Like De�nition 4.15, De�nition 4.22 de�nes sets T

s

containing transitions that can be

either enabled or disabled in s. However, the new de�nition does not consider all states

in S, but only successor states of s in A

G

. Moreover, it does not distinguish enabled

from disabled transitions: it requires the same condition for all transitions in T

s

. Finally,

note that this de�nition is general, abstract, in the sense that it is independent of any

particular model.

Let T be the set of all transitions in a conditional stubborn set T

s

that are enabled in

s. By de�nition of T

s

, T is nonempty. We now prove that T is a persistent set in s.

4.7. ALGORITHM 4 (CONDITIONAL STUBBORN SETS) 61

Theorem 4.23 Let T be the set of all transitions in a conditional stubborn set T

s

in

state s that are enabled in s. Then, T is a persistent set in s.

Proof:

The proof is by contradiction. Suppose that T is not persistent in s. Then, by

De�nition 4.1, there exists in A

G

a sequence s = s

1

t

1

! s

2

t

2

! s

3

: : :

t

n�1

! s

n

t

n

! s

n+1

of

transitions t

1

; t

2

; : : : ; t

n

62 T , such that t

n

is dependent in s

n

with some transition t 2 T .

Let us show that such a sequence cannot exist.

Since t 2 T , t 2 T

s

and t is enabled in s. Hence, by applying the de�nition of a

conditional stubborn set to t with the sequence s = s

1

t

1

! s

2

t

2

! s

3

: : :

t

n�1

! s

n

t

n

! s

n+1

given above, at least one of the t

1

; : : : ; t

n

is also in T

s

. Let t

i

be this transition: t

i

2 T

s

. If

t

i

is enabled in s, then t

i

2 T , which contradicts the assumption that t

1

; : : : ; t

n

62 T . Thus,

t

i

is disabled in s. Since t

i

is enabled in s

i

, by applying the de�nition of a conditional

stubborn set to t

i

2 T

s

with the sequence s = s

1

t

1

! s

2

t

2

! s

3

: : :

t

i�1

! s

i

, at least one of

the transitions t

1

; : : : ; t

i�1

is also in T

s

. Let t

j

, j < i, be this transition: t

j

2 T

s

. Again,

if t

j

is enabled in s, then t

j

2 T , which contradicts the assumption that t

1

; : : : ; t

n

62 T .

Thus, t

j

is disabled in s. By repeating the same reasoning, one comes to the conclusion

that t

1

is in T

s

. Since t

1

is enabled in s, this means that t

1

2 T , which contradicts the

assumption that t

1

; : : : ; t

n

62 T .

It is worth noticing that the converse also holds: for a given state s, every persistent

set in s is the set of enabled transitions in a conditional stubborn set in s.

Theorem 4.24 Let T be a nonempty persistent set in s. Then, there exists a conditional

stubborn set T

s

in s such that T is the set of all the transitions that are enabled in T

s

.

Proof:

Simply take T

s

= T . Since T is persistent in s, we know from De�nition 4.1 that for

all transitions t 62 T such that there exists in A

G

a sequence s = s

1

t

1

! s

2

t

2

! s

3

: : :

t

n�1

!

s

n

t

n

=t

! s

n+1

leading from s to t and including only transitions t

i

62 T , t is independent

in s

n

with all transitions in T . Thus, according to De�nition 4.22, no other transition

needs be added in T

s

, and T itself is a conditional stubborn set.

Consequently, all persistent sets can be obtained by computing conditional stubborn

sets.

It can also be proved that all stubborn sets are conditional stubborn sets, while the

converse does not hold.

Theorem 4.25 Let T

s

be a stubborn set in state s. Then, T

s

is also a conditional

stubborn set in s.

62 CHAPTER 4. PERSISTENT SETS

Proof:

Consider a transition t 2 T

s

that is disabled in s. The �rst transitions t

n

that are

dependent with t in some state s

n

reachable from s in A

G

are transitions such that

s

n

t

n

! s

n+1

, t is disabled in s

n

and t is enabled in s

n+1

. By De�nition 4.14, for all

sequences w of transitions from s to such a state s

n

, w contains at least one transition

in each set NES(t; s). Since all transitions in one set NES(t; s) are in T

S

by point 1 of

De�nition 4.15, all transitions in T

s

that are disabled in s satisfy the condition given in

De�nition 4.22.

Consider a transition t 2 T

s

that is enabled in s. In all states s

n

reachable from

s in A

G

where the �rst transitions t

n

that are dependent with t are enabled, t is also

enabled. Since t and t

n

are simultaneously enabled in s

n

and are dependent in s

n

,

they do-not-accord with each other, and all such transitions t

n

are in T

s

by point 2 of

De�nition 4.15. Hence, all transitions in T

s

that are enabled in s satisfy the condition

given in De�nition 4.22.

4.7.2 Algorithm

In other words, De�nition 4.22 is �ner than De�nition 4.15 and can be used to produce

smaller persistent sets, and actually, all persistent sets in s.

This is a strong, though purely theoretical, result. Indeed, it is not obvious how to

develop a practical algorithm that would be able to take advantage of De�nition 4.22,

since this de�nition uses information about sequences of transitions in the state space

A

G

, about which no assumption can be made.

Nevertheless, this more general de�nition can be pro�tably used to justify the cor-

rectness of a new relation which models more �nely the possible interactions between

operations on a given object. More precisely, our idea is to de�ne a relation between

operations on a given object that would tell us for each operation op used by a transition

in T

s

which other operations op

0

\might be the �rst to interfere with op from the current

state s", and thus which other transitions should be added to T

s

as well. The relation

\might be the �rst to interfere with op from the current state s" is represented by the

relation >

s

, which is formally de�ned as follows.

De�nition 4.26 Let op and op

0

be two operations on the same object O and s be a

reachable state. The relation op >

s

op

0

holds if there exists a sequence s = s

1

t

1

! s

2

t

2

!

s

3

: : :

t

n�1

! s

n

t

n

! s

n+1

of transitions from s in A

G

such that 81 � i < n : 8op

00

on O used

by t

i

: op and op

00

are independent in state s

i

, t

n

uses op

0

, and op and op

0

are dependent

in s

n

.

4.7. ALGORITHM 4 (CONDITIONAL STUBBORN SETS) 63

The di�erence between the relation >

s

and the relations \can-be-dependent" (De�ni-

tion 4.6) and \do-not-accord" (De�nition 4.13) is that dependencies between transitions

are only considered in successor states of s in A

G

, not for all states in S, and that only the

�rst dependent operations that may occur from s are considered, instead of all dependent

operations.

The relation >

s

is included in the relation \can-be-dependent" (De�nition 4.6): two

operations op and op

0

that satisfy the condition given in the de�nition of >

s

satisfy the

condition given in the de�nition of relation \can-be-dependent", while the converse does

not hold, since all paths from the current state s to states where op and op

0

are dependent

may contain a transition from some intermediate state s

0

that uses an operation op

00

dependent with op in s

0

.

The relation >

s

is also included in the relation \do-not-accord" (De�nition 4.13).

Indeed, if op and op

0

satisfy the condition given in the de�nition of >

s

, then there exists

a sequence s = s

1

t

1

! s

2

t

2

! s

3

: : :

t

n�1

! s

n

t

n

! s

n+1

of transitions from s in A

G

such that

81 � i < n : 8op

00

on O used by t

i

: op and op

00

are independent in state s

i

, t

n

uses op

0

, and

op and op

0

are dependent in s

n

. Therefore, op remains de�ned in all states s

i

, 1 � i � n,

and since op and op

0

are dependent in s

n

and both de�ned in s

n

, they do-not-accord. The

converse is not true, since all paths from the current state s to states where op and op

0

are both de�ned and dependent may contain a transition from some intermediate state

s

0

that uses an operation op

00

dependent with op in s

0

.

This proves that the relation >

s

models the possible interactions between operations

on a given object more �nely than the relations \can-be-dependent" and \do-not-accord".

Moreover, it can be proved that this relation can pro�tably replace the two latter

relations in all the previous algorithms for computing persistent sets, i.e., Algorithms 1,

2 and 3, while still producing persistent sets. Here, we will only prove this result for

Algorithm 3, the most elaborate algorithm considered so far, in order to clearly establish

that the new technique extends previous work. (The extension of Algorithm 1 and 2 can

be done in a similar way.)

Assume that a >

s

relation is given for all operations that can be performed on shared

objects. (We will discuss later how to provide >

s

in practice.) Then, consider Algo-

rithm 3 again, and replace the relations \can-be-dependent" and \do-not-accord" by >

s

.

We obtain Algorithm 4, presented in Figure 4.5. Note that >

s

is used in both steps 2.a

and 2.b.

We �rst prove that Algorithm 4 returns persistent sets in s. For doing this, by Theo-

rem 4.23, it is su�cient to show that the sets T

s

that it computes are conditional stubborn

sets in s.

64 CHAPTER 4. PERSISTENT SETS

1. Take one transition t that is enabled in s. Let T

s

= ftg.

2. For all transitions t in T

s

:

(a) if t is disabled in s, either:

i. choose a process P

j

2 active(t) such that s(j) 6= (pre(t) \ P

j

); then, add to T

s

all transitions t

0

such that (pre(t) \ P

j

) 2 post(t

0

).

ii. choose a condition c

j

in the guard G of t that evaluates to false in s; then,

for all operations op used by t to evaluate c

j

, add to T

s

all transitions t

0

such

that 9op

0

2 used(t

0

) : op >

s

op

0

.

(b) if t is enabled in s, add to T

s

all transitions t

0

such that

i. t and t

0

are in conict; or

ii. t and t

0

are parallel and 9op 2 used(t); 9op

0

2 used(t

0

) : op >

s

op

0

.

3. Repeat step 2 until no more transitions can be added. Then, return all transitions

in T

s

that are enabled in s (transitions in T

s

that are disabled in s are discarded).

Figure 4.5: Algorithm 4

Theorem 4.27 All sets T

s

that are computed by Algorithm 4 are conditional stubborn

sets in s.

Proof:

Let T

s

be a set of transitions that is computed by Algorithm 4. Let us show that T

s

is a conditional stubborn set in s.

Consider a transition t 2 T

s

that is disabled in s. The �rst transitions t

n

that are

dependent with t in some state s

n

reachable from s in A

G

by a sequence w of transitions

are transitions such that s

n

t

n

! s

n+1

, t is disabled in s

n

, and t is enabled in s

n+1

. Consider

such a sequence w of transitions from s in A

G

: s = s

1

t

1

! s

2

t

2

! s

3

: : :

t

n�1

! s

n

t

n

! s

n+1

. Two

cases are possible in step 2.a: either a process P

i

2 active(t) such that s(i) 6= (pre(t)\P

i

)

is chosen, or a condition c

i

in the guard G of transition t that evaluates to false in s is

chosen by Algorithm 4. In the �rst case, since t is enabled in s

n+1

, s

n+1

(i) = (pre(t)\P

i

),

and thus there exists a transition t

j

, 1 � j � n, such that (pre(t)\P

k

) 2 post(t

j

), which

is hence included in set T

s

by step 2.a.i. of Algorithm 4. In the second case, there exists

a transition t

j

, 1 � j � n, such that t

j

changes the value of c

i

from false to true by

modifying the output returned by an operation op used to evaluate c

i

, i.e., by performing

an operation dependent with op in s

j

. If there are several such transitions, let t

j

be the

�rst transition in w that uses an operation op

0

dependent with op in s

j

. By de�nition of

4.7. ALGORITHM 4 (CONDITIONAL STUBBORN SETS) 65

>

s

, we have op >

s

op

0

, and thus t

j

is in T

s

by step 2.a.ii. This proves that all disabled

transitions in T

s

satisfy point 1 of De�nition 4.22.

Consider a transition t 2 T

s

that is enabled in s. In all states s

n

reachable from s in

A

G

by a sequence w of transitions where the �rst transitions t

n

that are dependent with

t are enabled, t is also enabled. Consider such a sequence w of transitions from s in A

G

:

s = s

1

t

1

! s

2

t

2

! s

3

: : :

t

n�1

! s

n

t

n

! s

n+1

. We thus have that t and t

n

are enabled in s

n

and

are dependent in s

n

. If t and t

0

are not parallel, this implies by De�nition 4.5 that at

least one process is active for both transitions t and t

n

: P

i

2 (active(t)\ active(t

n

)). If

t and t

n

are in conict, t

n

is added to T

s

by step 2.b.i. If t and t

n

are not in conict,

we know that (pre(t) \ pre(t

n

)) = ;. Therefore, (pre(t) \ P

i

) 6= (pre(t

n

) \ P

i

), and it

is impossible for t and t

n

to be simultaneously enabled (process P

i

cannot be in two

di�erent local states (pre(t)\P

i

) and (pre(t

0

)\P

i

) at the same time), which contradicts

the assumption that t and t

n

are both enabled in s

n

.

Assume now that t and t

0

are parallel. We know from De�nition 3.21 that a su�cient

syntactic condition for two transitions t and t

n

to be independent in a state s

n

is that they

are parallel and 8op

1

2 used(t) and 8op

2

2 used(t

n

), if op

1

and op

2

are two operations

on a same object, then op

1

and op

2

are independent in s

n

. Since t and t

n

are dependent

in s

0

, this implies that 9op 2 used(t);9op

0

2 used(t

n

) : op and op

0

are dependent in s

0

.

Let t

j

, 1 � j � n be the �rst transition in w that uses an operation op

00

dependent (in

s

j

) with the operation op used by t. By de�nition of >

s

, we have op >

s

op

00

. Hence, by

step 2.b.ii of Algorithm 4, t

j

is included in T

s

. This proves that all enabled transitions

in T

s

satisfy point 2 of De�nition 4.22.

For a given state s, let Algo

i

(t) denote a persistent set that is returned by Algorithm i,

with i 2 f3; 4g, when t is the enabled transition chosen in step 1 of the algorithm. Let us

now compare the possible persistent sets that can be computed by Algorithm 3 and 4.

Theorem 4.28 For all transitions t that are enabled in a state s, for all persistent sets

Algo

3

(t) that can be returned by Algorithm 3, there exists an execution of Algorithm 4

that returns a persistent set Algo

4

(t) such that Algo

4

(t) � Algo

3

(t).

Proof:

Immediate by the de�nition of >

s

, since relation >

s

is included in both relations

\can-be-dependent" and \do-not-accord". Indeed, since the only di�erence between Al-

gorithm 3 and 4 is the replacement of the relations \can-be-dependent" and \do-not-

accord" by a �ner relation >

s

, the set T

s

constructed by Algorithm 4 is always a subset

(not necessarily proper) of the set T

s

constructed by Algorithm 3, provided that the same

choices are made in case of nondeterminism.

To use Algorithm 4 in practice, we �nally have to determine for each type of shared

66 CHAPTER 4. PERSISTENT SETS

object what the relation >

s

is for each pair (op; op

0

) of possible operations on this object.

Like all the other relations on operations we have de�ned so far (dependency, \can-

be-dependent", \do-not-accord"), >

s

can only be approximated in practice, by using

su�cient conditions that ensure that \enough" operations are considered. In other words,

we have by default op >

s

op

0

unless it can be proved that it is impossible to have a sequence

of transitions in A

G

satisfying De�nition 4.26. (Note that the relation >

s

can always

be approximated by using a relation \can-be-dependent" or \do-not-accord", since these

two relations include relation >

s

.)

Example 4.29 The following table represents a possible relation >

s

for the bounded

FIFO channel of size N considered in Example 3.20. For two operations op and op

0

on

a same channel, if the condition given in row op and column op

0

in the table is true in a

state s, then we have op >

s

op

0

, while \{" denotes the fact that op 6>

s

op

0

.

>

s

Send Receive Length Empty Full

Send n < N n = N n < N n < N n = N � 1

Receive n = 0 n > 0 n > 0 n = 1 n > 0

Length n < N n > 0 { { {

Empty n = 0 n > 0 { { {

Full n < N n = N { { {

For instance, let us show how to determine when Send >

s

Receive. One has to determine

when it is impossible to �nd a sequence s = s

1

t

1

! s

2

t

2

! s

3

: : :

t

m�1

! s

m

t

m

! s

m+1

of

transitions from s in A

G

such that the Send and Receive operations are dependent in

s

m

, and 81 � i < m : 8op

00

used by t

i

: Send and op

00

are independent in state s

i

. Since

Send and Receive are dependent in s

m

, we obtain from the conditional dependency

relation between Send and Receive (see the table given in Example 3.20) that either

n = 0 or n = N in s

m

. If n = 0 in s

m

, the Receive operation is not de�ned in s

m

and

there cannot be a transition t

m

executing a Receive operation such that s

m

t

m

! s

m+1

. If

n = N in s

m

, the Receive operation is de�ned. If n < N in s, and since n = N in s

m

, at

least one transition t

i

, 1 � i < m, in the sequence from s to s

m

executes an operation that

changes the value of n from n < N to N . This operation can only be a Send operation

and is performed from state s

i

where n < N . Therefore, we obtain from the conditional

dependency relation between Send and Send when n < N that the two Send operations

are dependent in s

i

. It is thus impossible to �nd a sequence satisfying De�nition 4.26

when n < N in s. One concludes that Send >

s

Receive only when n = N in s.

Note that it would not have been possible to obtain such a proof without using conditional

dependency and conditional stubborn sets. Also note that relation >

s

is not necessarily

symmetric.

4.8. DISCUSSION 67

Example 4.30 Consider a system containing two processes A = fa

0

; a

1

g and B =

fb

0

; b

1

; b

2

; b

3

g, an object of type \bounded FIFO channel" of size N = 5, denoted q,

as considered in Examples 3.20 and 4.29, an object x of type \boolean variable", and �ve

transitions

t

1

= (a

0

; true;Receive(q); a

1

), t

3

= (b

0

; true; x := 1; b

1

),

t

2

= (a

1

; true; x := 0; a

0

), t

4

= (b

1

; Empty(q); skip; b

2

),

t

5

= (b

1

; Not(Empty(q)); skip; b

3

),

where it is assumed that Receive(q) denotes a command that performs a Receive op-

eration on the object q (the output of the Receive operation on q is discarded here),

Empty(q) denotes a boolean condition equivalent to the value returned by the execution

of an Empty operation on object q, and skip denotes some internal (purely local) compu-

tation. Consider the state s = (a

0

; b

0

; (m

1

;m

2

;m

3

); 0) 2 A�B � V

q

� V

x

(q contains the

sequence of three messages m

1

m

2

m

3

). In state s, both transitions t

1

and t

3

are enabled.

As an exercice, the reader can compute what the persistent sets that can be returned by

Algorithms 1, 2 and 3 are. Actually, Algo

1

(t

1

) = Algo

1

(t

3

) = Algo

2

(t

1

) = Algo

2

(t

3

) =

Algo

3

(t

1

) = Algo

3

(t

3

) = ft

1

; t

3

g. In other words, neither Algorithm 1, nor Algorithm 2,

nor Algorithm 3 is able to return a nontrivial persistent set for this example. Let us

investigate how Algorithm 4, in contrast, is able to determine that ft

1

g is a persistent

set in s. Starting with t

1

as the initial enabled transition taken in step 1, Algorithm 4

has to include in set T

s

transitions that satisfy either point 2.b.i or point 2.b.ii. Since

no transition is in conict with t

1

, no transition is included by step 2.b.i. Since the

only operation used by t

1

is a Receive operation on q, and since n = 3 in s (there are

three messages in q), the relation >

s

for q given in Example 4.29 tells us to include by

point 2.b.ii all transitions that use either a Receive, a Length, or a Full operation on

q. Since there is no such transition other than t

1

itself, no other transition is included

in T

s

. (Note that Algorithm 3 would have included transition t

4

and t

5

by step 2.b.ii of

Algorithm 3, since a Receive operation and an Empty operation do-not-accord with each

other (when n = 1, they are both de�ned and are dependent).) Hence, Algo

4

(t

1

) = ft

1

g,

and a persistent-set selective search using Algorithm 4 may only execute transition t

1

from state s.

4.8 Discussion

Four algorithms for computing persistent sets have been presented. These algorithms

follow the same general algorithmic idea: they start by taking an enabled transition and

then compute a persistent set from this transition by adding repeatedly all transitions

that might interfere with it. They can all be viewed as approximations of conditional

68 CHAPTER 4. PERSISTENT SETS

stubborn sets (cf. De�nition 4.22) introduced in the previous Section. Note that other

algorithms approximating De�nition 4.22 are also possible.

We showed that

� Algo

1

(t) � Algo

2

(t);

� 9Algo

3

(t) : Algo

2

(t) � Algo

3

(t); and

� 8Algo

3

(t);9Algo

4

(t) : Algo

3

(t) � Algo

4

(t):

For the �rst three algorithms, we also showed that the worst-case time complexity to

compute Algo

1

(t), Algo

2

(t), and Algo

3

(t) are, respectively, O(jenabled(s)j

2

), O(jPj

2

),

and O(jT j

2

). Clearly, the more information about the system description the algorithm

uses and can exploit, the more sophisticated the algorithm is, the smaller the persistent

set that it returns can be, but the larger the run-time is.

There is an exception to this rule: the worst-case time complexity to computeAlgo

4

(t)

is the same as the one of Algo

3

(t). Indeed, the only di�erence between Algorithm 3 and

Algorithm 4 is that Algorithm 4 takes advantage of the relation >

s

, which models more

�nely the possible interactions between operations on shared objects. In other words,

Algorithm 4 improves Algorithm 3 without any run-time overhead. Actually, the relations

\can-be-dependent" and \do-not-accord" should be replaced by the relation >

s

in all the

algorithms presented in this Chapter, i.e., Algorithms 1, 2 and 3: this is a no-risk and

free improvement.

Of course, a relation >

s

has to be provided for each type of shared objects. But, in

practice, interactions between operations on shared objects have to be described some-

how anyway. We have showed that the relation >

s

gives the most general existing

framework for modeling interactions between operations, extending the relations \can-

be-dependent" and \do-not-accord". In practice, it is worth de�ning >

s

as �nely as

possible, in order to improve the e�ectiveness of the algorithms described in this Chap-

ter. Note that this has to be done only once for each type of shared object.

Therefore, we advocate the use of object libraries where classic high-level communi-

cation objects (such as various de�nitions of communication channels, shared variables,

semaphores, etc), operations on these objects, the dependency and >

s

relations are de-

�ned as carefully as possible once for all. One can then specify concurrent systems by

using these object libraries and thus gain from the re�ned dependencies during veri�-

cation which is still fully automatic. In contrast, we discourage the opposite approach

consisting of de�ning only one type \shared variable", which can be used to represent any

shared object, or even worst, the approach consisting in de�ning \everything", including

objects, by processes (for instance, a transmission medium can be modeled by a process

4.8. DISCUSSION 69

that transmits messages). Note that this recommendation is quite natural. Indeed, when

using such specialized objects, one indirectly provides more information to the veri�ca-

tion tool about the structure of the state space of the system being analyzed. If the

tool is clever enough to be able to use this information (as is the case with a \partial-

order" veri�cation tool), it is not surprising that the veri�cation can be performed more

e�ciently and becomes applicable to larger systems.

Another question is: which algorithm among Algorithms 1, 2, and 3 should be used

in conjunction with a relation >

s

? It is di�cult to answer this question.

Indeed, on one hand, it is easy to see that if a persistent set T in a state s is a subset

of another persistent set T

0

in s, then the reduced state-space A

R

obtained by choosing

T in state s is smaller than the reduced state-space A

0

R

obtained by choosing T

0

in state

s (provided that the same rule is applied in all other visited states of A

R

). Therefore, T

should be prefered to T

0

.

However, on the other hand, if a persistent set T in a state s contains less transitions

than another persistent set T

0

in s, but is not a subset of T

0

, then choosing T instead of

T

0

is just a heuristics: the reduced state-space A

R

obtained by choosing T in s will not

necessarily be smaller than the reduced state-space A

0

R

obtained by choosing T

0

in s.

This implies that there is no \best" algorithm for computing persistent sets. Indeed,

min(PS

j

), the smallest persistent set that can be computed by Algorithm j, is not nec-

essarily included in min(PS

i

), i < j. Computing as small persistent sets as possible is

only a heuristics. Moreover, computing smaller persistent sets can only be done at an ad-

ditional run-time expense, and using a more elaborate algorithm does not systematically

yield smaller persistent sets: an elaborate algorithm may return the same persistent set

as a simple algorithm, it then requires more time to produce the same result.

Therefore, in practice, the choice of a persistent-set algorithm is a trade-o� between

the complexity of the algorithm, its additional run-time expense, and the reduction it

can yield. This choice also depends on the model used to represent concurrent systems

(some information is hard to extract from some models), and on the type of systems that

have to be analyzed (some optimizations are useless for some classes of examples).

Note 4.31 In [Val91], it is pointed out that all transitions that can disable an enabled

transition in a stubborn set T

s

need not systematically be included in T

s

, if at least

one enabled transition in T

s

is independent with all transitions not in T

s

. From this

observation, Valmari introduced another variant of stubborn sets, called \weak stubborn

sets" [Val91]. Note that, following the idea of Valmari, \weak" versions of our notions of

persistent set and of conditional stubborn set can easily be de�ned.

70 CHAPTER 4. PERSISTENT SETS

Note 4.32 A de�nition very similar to our de�nition of persistent set appeared (inde-

pendently) in [KP92b]. This de�nition is the following.

Let s be a state. A faithful decomposition in s is a subset of transitions T

s

� T

such that each transition in T n T

s

is either independent of each transition

in T

s

or is disabled in s and its successors as long as no operation of T

s

is

executed.

It is easy to see that the set of all enabled transitions in a faithful decomposition T

s

in s

is persistent in s.

Chapter 5

Sleep Sets

5.1 Basic Idea

The second technique for computing the set of transitions T to consider in a selective

search is the sleep set technique [GW93] introduced in [God90]. This technique does not

exploit information about the static structure (code) of the program, as persistent-set

algorithms do, but rather information about the past of the search. Used in conjunc-

tion with a persistent-set technique, sleep sets can further reduce the number of states

explored. Indeed, when the persistent-set technique cannot avoid the selection of inde-

pendent transitions in a state, sleep sets can avoid the wasteful exploration of multiple

interleavings of these transitions.

Example 5.1 Consider a system containing two processes A = fa

0

; a

1

; a

2

g and B =

fb

0

; b

1

; b

2

g, two objects x and y of type \boolean variable", and four transitions

t

1

= (a

0

; true; x := 0; a

1

), t

3

= (b

0

; true; y := 1; b

1

),

t

2

= (a

1

; true; y := 0; a

2

), t

4

= (b

1

; true; x := 1; b

2

).

Consider the state s = (a

0

; b

0

; 0; 0) 2 A � B � V

x

� V

y

. In state s, both transitions t

1

and t

3

are enabled. The global state space A

G

corresponding to this system is shown

in Figure 5.1. It is easy to see that the only persistent set in s is the set ft

1

; t

3

g of all

enabled transitions. Therefore, every persistent-set selective search, whatever algorithm

it uses to compute persistent sets, has to execute both transitions t

1

and t

3

from state s.

Note that transitions t

1

and t

3

are independent in s.

Let us consider an example to illustrate the basic idea behind sleep sets. Consider

again the system of Example 5.1. In state s, two enabled independent transitions t

1

71

72 CHAPTER 5. SLEEP SETS

(a

0

; b

0

; 0; 0)

(a

1

; b

0

; 0; 0) (a

0

; b

1

; 0; 1)

(a

1

; b

1

; 0; 1)(a

2

; b

0

; 0; 0) (a

0

; b

2

; 1; 1)

t

3

t

3

t

1

t

1

t

2

s

1

s

s

3

t

4

Figure 5.1: Global state space for the system of Example 5.1

and t

3

are selected to be explored from s. After exploring t

1

, t

3

is still enabled since

t

1

and t

3

are independent in s, and t

3

could thus be selected to be explored from the

state s

1

reached after executing t

1

from s. Conversely, after exploring t

3

, t

1

will, for the

same reason, also still be enabled and could also be selected to be explored from the

state s

3

reached after executing t

3

from s. When selecting two independent transitions

t

1

and t

3

from s, there is thus a risk that the two interleavings of t

1

and t

3

, i.e., the two

sequences t

1

t

3

and t

3

t

1

, will be explored. This is potentially wasteful since both of these

interleavings lead to the same state. In order to prevent this situation from occurring,

the sleep set method prevents the exploration of t

1

in s

3

: t

1

is introduced in the \sleep

set associated with s

3

".

More precisely, a sleep set is a set of transitions. A sleep set is associated with each

state s reached during the search. The sleep set associated with a state s is a set of

transitions that are enabled in s but will not be executed from s. The sleep set associated

with the initial state s

0

is the empty set. The sleep sets of the successors of a state s are

then computed as follows.

Let T be the set of transitions that have been selected to be explored from s, and

let s:Sleep denote the sleep set associated with s. Take a �rst transition t

1

out of T .

The sleep set associated with the state reached after executing t

1

from s is the sleep

set associated with s unmodi�ed except for the elimination of the transitions that are

5.2. ALGORITHM 73

1 Initialize:Stack is empty; H is empty;

2 s

0

:Sleep = ;;

3 push (s

0

) onto Stack;

4 Loop: while Stack 6= ; do f

5 pop (s) from Stack;

6 if s is NOT already in H then f

7 enter s in H;

8 T = Persistent Set(s) n s:Sleep

9 g

10 else f

11 T = ft j t 2 H(s):Sleep ^ t 62 s:Sleepg;

12 s:Sleep = s:Sleep \H(s):Sleep;

13 H(s):Sleep = s:Sleep

14 g

15 for all t in T do f

16 s

0

= succ(s) after t; /* t is executed */

17 s

0

:Sleep = ft

0

2 s:Sleep j (t; t

0

) are independent in s g;

18 push (s

0

) onto Stack;

19 s:Sleep = s:Sleep [ftg

20 g

21 g

Figure 5.2: Selective search using persistent sets and sleep sets

dependent with t

1

in s. (Equivalently, only the transitions of the sleep set associated

with s that are independent with t

1

in s are passed to the sleep set associated with the

state reached after executing t

1

from s.) Let t

2

be a second transition taken out of T .

The sleep set associated with the state reached after executing t

2

from s is the sleep set

associated with s augmented with t

1

, minus all transitions that are dependent with t

2

in s. One proceeds in a similar way with the remaining transitions of T . The general

rule is thus that the sleep set associated with a state s

0

reached by a transition t from a

state s is the sleep set that was obtained when reaching s augmented with all transitions

already taken from T , and purged of all transitions that are dependent with t in s.

5.2 Algorithm

The algorithm of Figure 5.2 represents a persistent-set selective search augmented with

all operations required to manipulate sleep sets. It uses a Stack and a hash table H to

74 CHAPTER 5. SLEEP SETS

store visited states and their associated sleep set. Each time a new state s is encountered

during the search (line 6), it is stored in the hash table H, with its associated sleep set

s:Sleep (line 7). Then, a call to the function Persistent Set is performed (line 8). This

function returns a persistent set T in s that is nonempty if there exist transitions enabled

in s. Transitions that are in the current sleep set s:Sleep need not be explored, and are

thus removed from set T (line 8).

If the current state s has already been visited (line 10), let H(s):Sleep denote the

sleep set that has been stored with s in H. If H(s):Sleep contains transitions that are

not in the current sleep set s:Sleep associated with s, these transitions are selected to be

explored (line 11) with a new sleep set equals to s:Sleep \ H(s):Sleep (lines 12). This

new sleep set associated with s is stored with s in the hash table H (line 13). Hence, the

value of H(s):Sleep may shrink as the search proceeds, since transitions can be removed

from it at a later visit. (Note that H(s):Sleep never grows.)

All transitions selected to be explored, i.e., in set T , are explored (line 15{16), and

the sleep set that is to be associated with each successor state of s is computed (line 17{

19) following the procedure described above (s:Sleep is used in line 19 as a temporary

variable to store all transitions already taken from T during this computation).

The correctness proof of the algorithm is the following. Let A

R

be the reduced state-

space explored by the algorithm of Figure 5.2. We now prove that all deadlocks in A

G

are in A

R

.

Theorem 5.2 Let s be a state in A

R

, and let d be a deadlock reachable from s in A

G

by

a sequence w of transitions. For all w

i

2 [w]

s

, let t

i

denote the �rst transition of w

i

. Let

H(s):Sleep denote the sleep set stored with s in H when the search is completed. If for

all t

i

, t

i

is not in H(s):Sleep, then d is reachable from s in A

R

.

Proof:

The proof proceeds by induction on the length of w. For jwj = 0, the result is

immediate. Now, assume the theorem holds for paths (sequences of transitions) of length

n � 0 and let us prove that it holds for a path w of length n+ 1.

We �rst prove that at least one of the transitions t

i

has been executed from s in A

R

.

If some of the t

i

have been in H(s):Sleep at some moment during the search, they have

been removed from H(s):Sleep at a later visit of s, since none of the t

i

are in H(s):Sleep

when the search is completed; since transitions that are removed from H(s):Sleep are

executed, there is at least one of the transitions t

i

that has been executed from s in A

R

.

If none of the t

i

were ever in H(s):Sleep, this means that none of them were in the sleep

set s:Sleep associated with s the very �rst time it has been visited (since H(s):Sleep can

only shrink between successive visits of s). During this �rst visit, a call to the function

5.2. ALGORITHM 75

Persistent Set was performed and, from Lemma 4.2, we know that at least one of the t

i

was in the persistent set in s that was returned. Since this transition was not in s:Sleep,

it has been executed from s in A

R

.

Now, consider the last visit of s where some of the t

i

have been executed from s (we

have just proved such a visit exists). Let t

1

denote the �rst transition t

i

that has been

explored during this visit. From this visit of s until the end of the search, H(s):Sleep

did not contain any transition t

i

, since we assumed that H(s):Sleep does not contain

any transition t

i

at the end of the search, and since none of the t

i

are executed from s

after this last visit. Let s:Sleep denote the sleep set associated with s just before the

execution of t

1

from s. At this moment, s:Sleep does not contain any transition t

i

.

Let s

0

be the state reached after executing t

1

from s. We have w

1

= t

1

w

0

. By

Theorem 3.10, since w leads to d in n + 1 steps, w

1

also leads to d, in n + 1 steps.

Consequently, w

0

leads to d from s

0

, and is of length n. Let us show that, for all w

0

i

2 [w

0

]

s

0

,

the �rst transition t

0

i

of w

0

i

is not in H(s

0

):Sleep.

Assume the opposite, i.e., there exists some transition t

0

i

2 H(s

0

):Sleep at the end of

the search. Hence, t

0

i

has always been in H(s

0

):Sleep. Consequently, t

0

i

was in the sleep

set s

0

:Sleep associated with s

0

when s

0

was explored from s by t

1

. This implies that t

0

i

and t

1

are independent in s, else t

0

i

would not have been passed on to s

0

:Sleep. Since they

are independent in s, t

0

i

is enabled in s and is the �rst transition of a path w

i

leading

from s to d. Given that t

0

i

is in s

0

:Sleep, either t

0

i

was in s:Sleep, or t

0

i

was added after

being executed from s. The �rst possibility is in contradiction with the fact that t

0

i

is

also the �rst transition of some w

i

2 [w]

s

leading to d from s and thus is not in s:Sleep.

The second possibility is incompatible with the fact that t

1

, not t

0

i

, is the �rst transition

among the t

i

to be executed from s.

The inductive hypothesis can thus be used with w

0

from s

0

to establish that d is visited

from s

0

and hence from s.

By applying Theorem 5.2 to the initial state s

0

, we directly reach the conclusion

that the algorithm of Figure 5.2 indeed reaches all deadlock states, since the sleep set

associated to the initial state is the empty set.

The algorithm of Figure 5.2 stores in randomly accessed memoryone sleep setH(s):Sleep

with each state encountered during the search. The size of H(s):Sleep is bounded by the

number of transitions that are enabled in s. Sleep sets s:Sleep associated with states that

are in the Stack can be stored with these states in a sequentially accessed memory. The

overhead in randomly accessed memory due to the use of sleep sets in a persistent-set

selective search is thus O(jS

R

jjEnabledj) where jS

R

j denotes the number of states in A

R

and jEnabledj is the average number of transitions that are enabled in a state.

Concerning time complexity, each transition in A

R

is explored exactly once. Each time

76 CHAPTER 5. SLEEP SETS

a transition t from a state s to a state s

0

is executed during the search, a sleep set s

0

:Sleep

is computed from s:Sleep and the transitions already taken from s. This can be done in

time O(jenabled(s)j) (assuming that it takes O(1) time to check whether two transitions

are independent or not in a given state). One also has to check whether s

0

is already in

H: let us assume that this operation takes O(1) time (i.e., that the number of collisions

is bounded). When s

0

has already been visited, s

0

:Sleep is compared to H(s

0

):Sleep:

this can be done in O(jenabled(s

0

)j). Overall, the overhead in run time due to the

manipulation of sleep sets in a persistent-set selective search is thus O(j�

R

jjEnabledj)

where j�

R

j is the number of transitions in A

R

and jEnabledj is the average number of

transitions that are enabled in a state.

Note 5.3 Obviously, the set T = Persistent Set(s)n s:Sleep of transitions selected to be

executed from a state s is, in general, not a persistent set in s. For instance, consider

state s

3

in Example 5.1. The sleep set s

3

:Sleep associated to state s

3

will be ft

1

g. Since

the only persistent set in s

3

is the set ft

1

; t

4

g, the set T of transitions executed from s

3

by Algorithm 5.2 will be ft

4

g, which is not persistent in s. This illustrates the fact that

sleep sets enable one to go beyond persistent sets in computing the transitions that need

to be explored in a selective search.

5.3 Properties of Sleep Sets

5.3.1 On Combining Sleep Sets with Persistent Sets

We showed that the notion of sleep set is orthogonal to the notion of persistent set. We

also showed how sleep sets and persistent sets can be combined. In this Section, we

further discuss this combination.

Consider the case where sleep sets are used alone with a classical search, i.e., without

being combined with a persistent-set algorithm. This is equivalent to assume that, in

each state s that is visited during the search performed by the algorithm of Figure 5.2,

the function Persistent Set returns the set of all enabled transitions in s. (Since this

set is trivially persistent in s, this case is actually a particular case of the general case

considered in the previous Section.) Then, we can show that all states in A

G

are visited

by such a search: all states in A

G

are in A

R

, where A

R

is the reduced state-space explored

by such an algorithm.

The proof is based on the following Theorem.

5.3. PROPERTIES OF SLEEP SETS 77

Theorem 5.4 Let A

R

be the reduced state-space explored by the algorithm of Figure 5.2

when the function Persistent Set always returns the set of all enabled transitions. Let s be

a state in A

R

, and let x be a state reachable from s in A

G

by a sequence w of transitions.

For all w

i

2 [w]

s

, let t

i

denote the �rst transition of w

i

. Let H(s):Sleep denote the sleep

set stored with s in H when the search is completed. If for all t

i

, t

i

is not in H(s):Sleep,

then x is reachable from s in A

R

.

Proof:

The proof is similar to the proof of Theorem 5.2. The only di�erence is that, instead

of invoking Lemma 4.2, in the second paragraph of the proof, to deduce that at least

one of the t

i

leading to the deadlock d is in the set of transitions that is returned by

Persistent Set, the fact that here at least one of the t

i

leading to x has been executed

from s is straightforward, since all transitions not in s:Sleep are systematically executed

from s, including all transitions t

i

.

By applying Theorem 5.4 to the initial state s

0

, we directly reach the conclusion that

the sleep-set algorithm used without being combined with a persistent-set algorithm visits

all reachable states, since the sleep set associated to the initial state is the empty set. In

other words, sleep sets used alone cannot reduce the number of states in A

R

. However,

they can reduce the number of transitions in A

R

, which can still be very useful (see

Chapter 8).

Let us consider another particular case. Assume that, during the search performed by

the algorithm of Figure 5.2, the function Persistent Set never returns enabled transitions

that are independent. In other words, the function Persistent Set called in any state s

always returns a set T of transitions enabled in s such that, for all t and t

0

in T , t and

t

0

are dependent in s. In this case, it is easy to see that all sleep sets will always be

empty: from the initial state, whose associated sleep set is empty, no transition will ever

be introduced in a sleep set, for all successor states. Therefore, the impact of sleep sets

will be void, and sleep sets will not yield any reduction in both the number of states and

transitions that are explored.

Note that, roughly speaking, using sleep sets with a \perfectly bad" persistent-set

algorithm is similar to the �rst case mentioned above, while using sleep sets with a

\perfectly good" persistent-set algorithm might be equivalent to the second case above.

In practice, however, persistent-set algorithms are rarely perfectly good or bad in all

states, and these two extreme cases rarely occur. Therefore, sleep sets can very often

further reduce both the number of states and transitions that need to be explored for

veri�cation purposes (see Chapter 8).

78 CHAPTER 5. SLEEP SETS

t

4

t

4

t

4

t

3

t

3

t

3

t

2

t

2

t

2

t

1

t

1

t

1

ft

2

g

ft

2

g

ft

1

g

ft

1

g

fg

fg

fg

fg

fg

Figure 5.3: Reduced state space with sleep sets

5.3.2 Reducing State Matchings

A nice property of sleep sets is that they can strongly decrease the number of state

matchings that occur during the search [GHP92]. A state matching occurs each time

an already visited state is visited again later during the search. The reduction of state

matchings due to sleep sets can be illustrated by the following example.

Example 5.5 Consider a system containing two processes A = fa

0

; a

1

; a

2

g and B =

fb

0

; b

1

; b

2

g, two objects x and y of type \boolean variable", and four transitions

t

1

= (a

0

; true; x := 1; a

1

), t

3

= (b

0

; true; y := 1; b

1

),

t

2

= (a

1

; true; x := 0; a

2

), t

4

= (b

1

; true; y := 0; b

2

).

Consider the initial state s

0

= (a

0

; b

0

; 0; 0) 2 A�B�V

x

�V

y

. The reduced state space A

R

explored by Algorithm 5.2 for this system when the function Persistent Set(s) returns the

set of all enabled transitions in s is presented in Figure 5.3. The initial state is the state

on top of the Figure. The value of the sleep set H(s):Sleep when the search is completed

is given between braces beside each state s. Dotted transitions are not explored by the

algorithm of Figure 5.2.

5.3. PROPERTIES OF SLEEP SETS 79

For the system considered in the previous example, all states are visited only once by

the algorithm of Figure 5.2. Of course, if one could know it in advance before starting

the search, it would not be necessary to store any states! Unfortunately, for arbitrary

systems, it is impossible to determine before the search is completed which are the states

that are encountered only once.

We will come back to this property of sleep sets in Chapter 8.

Note 5.6 Another sleep-set algorithm appeared in [GHP92], where two additional as-

sumptions were made: sleep sets were assumed to be used without being combined with a

persistent-set algorithm, and the search was assumed to be performed in a \depth-�rst"

order. Under these assumptions, another sleep set algorithm was given, that did not

require to store a sleep set H(s):Sleep with each state in H. Note that, in this Chapter,

no assumptions were made about the order in which the search has to be performed.

80 CHAPTER 5. SLEEP SETS

Chapter 6

Veri�cation of Safety Properties

6.1 Beyond Deadlock Detection

So far, we have presented several selective-search algorithms that explore only a reduced

part A

R

of the global state space A

G

such that all deadlocks in A

G

are in A

R

. In order

to check for properties more elaborate than deadlocks, it is usually necessary to preserve

more information, i.e., more states and transitions, in the reduced state space A

R

.

Indeed, consider, for instance, the reachability of a local state l of a process P

i

. Pre-

cisely, this problem amounts to checking whether there exists a global state s that is

reachable from the initial state s

0

and such that s(i) = l. The algorithms presented

in the two previous Chapters are not su�cient for checking such a property. This is

illustrated by the following example.

Example 6.1 Consider a system containing two processes A = fa

0

; a

1

g and B = fb

0

; lg,

two objects x and y of type \boolean variable", and three transitions

t

1

= (a

0

; true; x := 1; a

1

), t

3

= (b

0

; true; y := 1; l),

t

2

= (a

1

; true; x := 0; a

0

).

State s

0

= (a

0

; b

0

; 0; 0) 2 A � B � V

x

� V

y

is the initial state of this system. In s

0

,

transitions t

1

and t

3

are enabled and independent. The set ft

1

g is a persistent set in

s

0

. Hence, a selective search can, for instance, explore only t

1

from s

0

. After executing

t

1

from s

0

, the state s

1

= (a

1

; b

0

; 1; 0) is reached. In s

1

, t

2

and t

3

are enabled and

independent, and ft

2

g is a persistent set in s

1

. Thus, a selective search can explore only

t

2

from s

1

. After executing t

2

, the selective search stops since transition t

2

leads back to

the initial state s

0

, which has already been visited with an empty sleep set. Transition

t

3

, though being enabled in s

0

and s

1

, has never been explored, and local state l has

81

82 CHAPTER 6. VERIFICATION OF SAFETY PROPERTIES

(a

0

; b

0

; 0; 0)

(a

1

; b

0

; 1; 0)

t

1

t

2

Figure 6.1: Reduced state space for the system of Example 6.1

not been reached. The reduced state space A

R

explored, which is shown in Figure 6.1,

is su�cient for proving the absence of deadlock in the system: since A can loop forever

independently of the rest of the system, i.e., process B, one can conclude that this system

is deadlock free even without considering the possible behaviors of B. However, A

R

is

not su�cient to determine if l is reachable or not from the initial state.

The phenomenon illustrated above is referred to as the \ignoring problem" in [Val91]:

the behavior of some processes (e.g., B in the above example) can be completely ignored

from some state reached during a selective search. In order to check other properties

than deadlocks, selective-search algorithms have to be adapted to the type of property

one wants to check.

In this Chapter, we present a modi�cation of a selective-search algorithm that can be

used for checking the reachability of local states, and, more generally, for checking any

safety property. The idea is to enforce an additional condition, that we call a proviso,

during the selective search. This proviso ensures that the choices between enabled inde-

pendent transitions made during the search are not completely \unfair" with respect to

some processes. Our proviso can be used with a selective search that makes use of both

persistent sets and sleep sets to select the transitions that are explored.

This Chapter is organized as follows. In the next Section, we present the proviso

mentioned above. Then, we prove that any selective search using persistent sets and

sleep sets augmented with this proviso explores a trace automaton. Loosely speaking, a

trace automaton for a given system is an automaton that accepts at least one interleaving

for each trace (concurrent execution) the system can perform from its initial state. Many

interesting properties of a concurrent system can be checked on a trace automaton.

These properties are presented in Section 6.4. Finally, we compare our solution with

6.2. ALGORITHM 83

other related work.

6.2 Algorithm

We saw with Example 6.1 that in general, the reduced state space A

R

that is explored by

a selective-search algorithm using persistent sets and sleep sets, as shown in Figure 5.2,

is not su�cient to check the reachability of local states. This problem can be solved by

modifying the selective-search algorithm as follows.

The modi�cation consists in enforcing an additional condition, called a proviso, on

the sets of transitions that are returned by the function Persistent Set. This proviso

requires that the selective search is performed in a depth-�rst order. Let Stack denote

the current \depth-�rst-search stack" during the search, i.e., the set of states that are

in the path from the initial state s

0

to the currently visited state. The proviso enforces

the following restrictions on the sets of transitions that can be returned by the function

Persistent Set [HGP92].

De�nition 6.2 Each time a call to the function Persistent Set is performed during the

search, the persistent set in s that is returned by this function has to satisfy the following

requirement:

1. either 9t 2 Persistent Set(s): t 62 s:Sleep and s

0

62 Stack, where s

0

is the successor

of s by t (s

t

! s

0

), and s:Sleep is the sleep set associated with s when the call is

performed;

2. or Persistent Set(s) = enabled(s).

In other words, the set Persistent Set(s) returned by the function Persistent Set has

to contain at least one transition not in the current sleep set s:Sleep and not lead-

ing to the current Stack. Else, if such a persistent set does not exist, the set of all

enabled transitions is returned (remember this set is always a persistent set). Let Persis-

tent Set Satisfying Proviso(s) denote a persistent set in s that satis�es the above proviso.

The algorithm of Figure 6.2 shows how to perform a selective search using persistent

sets and sleep sets in a depth-�rst order. This algorithm is very similar to the one of

Figure 5.2. The main di�erence is that, at any time during the search, the data structure

Stack now contains exactly the states that are in the path currently being explored from

the initial state s

0

to the currently visited state. Note that, as explained in the previous

84 CHAPTER 6. VERIFICATION OF SAFETY PROPERTIES

1 Initialize:Stack is empty; H is empty;

2 Search() f

3 s

0

:Sleep = ;; delay(s

0

) = ;;

4 push (s

0

) onto Stack;

5 DFS()

6 g

7 DFS() f

8 s = top(Stack); /* s is visited */

9 if s is NOT already in H then f

10 enter s in H;

11 T = Persistent Set Satisfying Proviso(s)ns:Sleep

12 g

13 else f

14 T = ft j t 2 H(s):Sleep ^ t 62 s:Sleepg;

15 s:Sleep = s:Sleep \H(s):Sleep;

16 H(s):Sleep = s:Sleep

17 g

18 for all t in T do f

19 s

0

= succ(s) after t; /* t is executed */

20 s

0

:Sleep = ft

0

2 s:Sleep j (t; t

0

) are independent in s g;

21 if s

0

is in Stack then f

22 delay(s

0

) = delay (s

0

) [fs

0

:Sleepg

23 g

24 else f

25 delay(s

0

)= ;;

26 push (s

0

) onto Stack;

27 DFS()

28 g

29 s:Sleep = s:Sleep [ftg

30 g

31 pop s from Stack; /* s is backtracked */

32 if delay(s) 6= ; then f

33 take s:Sleep out of delay(s);

34 push (s) onto Stack;

35 DFS()

36 g

37 g

Figure 6.2: Selective search using persistent sets, sleep sets, and proviso

6.2. ALGORITHM 85

Chapter, a state can be visited with di�erent sleep sets, and transitions from this state

can be explored at successive visits of the state (though a transition is never explored

more than once from the same state). In order to prevent a state s from appearing several

times in Stack (in case of cycles), and to guarantee that the exploration is performed in

a depth-�rst order, re-explorations of states that are in Stack are delayed (line 21{23):

the sleep set that has to be associated with s during such a re-exploration is saved in an

auxiliary data structure named \delay". Later, once s has just been backtracked (line

31), the algorithm checks (line 32) whether there are delayed re-explorations of s. If yes,

state s is then re-visited with a sleep set taken out of delay(s) (line 33{35). (The order

in which sleep sets are taken out of delay(s) does not matter.)

In what follows, a state s is said to be \visited" when it is accessed from the top of

Stack in line 8 of the algorithm. s is said to be \backtracked" when it is popped from

Stack (line 31). When a state s is backtracked, \the last visit of s" is the last time s has

been visited, while \during the last visit of s" is the interval of time from the last time

s has been visited until the last time it has been backtracked. If s

t

! s

0

, \the sleep set

associated with s

0

after the execution of t from s" denotes the sleep set associated to s

0

that is computed during the visit of s (line 20) when t is executed from s.

Note that, since the search is performed in a depth-�rst order, when a state s is

backtracked, all the transitions t that have been selected to be executed from s (i.e., that

are in set T considered in line 18) during the last visit of s have been executed. Moreover,

all the (immediate) successors s

0

of s by such transitions t that are not in Stack have

already been visited with the sleep set associated with s

0

after the execution of t from s,

and have already been backtracked. The value of Stack just after a state s is visited and

just before s is backtracked is the same (and contains s).

Example 6.3 Consider again the system of Example 6.1. A possible reduced state

space explored by the algorithm of Figure 6.2 for this system is shown in Figure 6.3. The

value of the sleep set H(s):Sleep when the search is completed is given between braces

below each state s. Dotted transitions are not explored by the algorithm of Figure 6.2.

Initially, the persistent set ft

1

g is selected in the initial state s

0

= (a

0

; b

0

; 0; 0). State

s

1

= (a

1

; b

0

; 1; 0) is then reached with an empty sleep set. In s

1

, ft

2

g is a persistent set.

However, it does not satisfy the proviso since t

2

leads back to the state s

0

, which is in

Stack. Thus, another persistent set has to be computed. The set ft

2

; t

3

g is a persistent

set in s

1

and satis�es the proviso since t

3

leads to a state not in Stack. By executing t

2

before t

3

in s

1

, t

2

is introduced in the sleep set associated to the state s

2

= (a

1

; l; 1; 1)

reached after the execution of t

3

from s

1

. In s

2

, only t

2

is enabled. Since it is in the sleep

set associated to s

2

, it is not executed, and the search stops. Note that, if sleep sets were

not used (or if the persistent set ft

3

g was selected in s

1

), t

2

would have been explored

from s

2

, state s

3

= (a

0

; l; 0; 1) would have been explored, and transition t

1

from s

3

would

86 CHAPTER 6. VERIFICATION OF SAFETY PROPERTIES

(a

0

; b

0

; 0; 0)

(a

1

; b

0

; 1; 0)

(a

0

; l; 0; 1)

(a

1

; l; 1; 1)

t

1

t

2

t

2

t

1

t

3

t

3

fg

fg

ft

2

g

Figure 6.3: Reduced state space with proviso for the system of Example 6.1

have been explored as well.

6.3 Trace Automata

In this Section, we prove that reduced state spaces A

R

explored by the algorithm of

Figure 6.2 are trace automata (introduced in [God90]) provided that the valid conditional

dependency relation used is weakly uniform.

Intuitively, a trace automaton for a given system is an automaton that accepts at least

one interleaving for each trace (concurrent execution) the system can perform from its

initial state s

0

. Formally, trace automata are de�ned as follows [God90].

De�nition 6.4 Let A

G

be the global state space of a system. A reduced state space A

R

for this system is a trace automaton for this system if, for all sequences w of transitions

from the initial state s

0

in A

G

, there exists a sequence w

0

of transitions from s

0

in A

R

such

that w

0

is a linearization of a trace de�ned by an extension of w, i.e., w 2 Pref([w

0

]

s

0

),

where Pref([w]

s

0

) denotes the set of the pre�xes of the sequences in [w]

s

0

.

Let L

A

G

and L

A

R

be respectively the languages of �nite words formed by symbols of T ,

i.e., sequences of transitions, accepted by the automaton A

G

and A

R

(cf. Section 2.2). If

A

R

is a trace automaton for the system, we have:

L

A

G

=

[

w2L

A

R

Pref([w]

s

0

):

6.3. TRACE AUTOMATA 87

All sequences of transitions from s

0

in A

G

are represented by a trace in A

R

, hence the

name \trace automaton".

Example 6.5 The reduced state space shown in Figure 6.3 is a trace automaton for

the system of Example 6.1. Indeed, the reader can check that for all sequences w of

transitions from s

0

in A

G

, there exists a linearization w

0

of a trace de�ned by an extension

of w. For instance, consider the sequence w = t

1

t

2

t

3

t

1

t

2

from s

0

in A

G

. The sequence

w

0

= t

1

t

2

t

1

t

2

t

1

t

3

from s

0

in A

R

is such that w

00

= t

1

t

2

t

3

t

1

t

2

t

1

2 [w

0

]

s

0

and w 2 Pref(w

00

).

We now prove that the algorithm of Figure 6.2 explores trace automata. However, in

order to establish this result, we need to make an additional assumption about the valid

conditional dependency relation that is used for computing persistent sets and sleep sets

in the algorithm of Figure 6.2: this dependency relation must be weakly uniform

1

.

De�nition 6.6 A valid conditional dependency relation D for a LFCS is said to be

weakly uniform if 8t

1

; t

2

; t

3

2 T ;8s 2 S, if we have s

t

1

! s

1

t

2

! s

2

, s

t

3

! s

0

, (t

1

; t

3

; s) 62 D

and (t

2

; t

3

; s

1

) 62 D, then (t

1

; t

2

; s) 2 D implies (t

1

; t

2

; s

0

) 2 D.

In a similar way, weakly uniform dependency relations can be de�ned between operations

on objects. It is straightforward to show that the valid conditional dependency relation

on transitions obtained with De�nition 3.21 and weakly uniform valid conditional de-

pendency relations between operations on objects is weakly uniform. Note that a valid

constant dependency relation is trivially weakly uniform.

Example 6.7 The two dependency relations given in Example 3.19 are weakly uniform.

In contrast, the dependency relation given in Example 3.20 is not weakly uniform. Indeed,

when n = N � 1, a Full operation can be followed by a Send operation on the same

bounded FIFO channel of size N , a Receive operation is de�ned and is independent

with both Full and Send operations, Full and Send operations are dependent, but

after executing a Receive operation, they become independent (when n = N � 2). It

is possible to modify the dependency relation given in Example 3.20 to obtain a weakly

uniform dependency relation by considering Send and Full operations as being dependent

when n < N (instead of when n = N � 1), and Receive and Empty operations as being

dependent when n > 0 (instead of when n = 1).

1

by analogy with another, stronger, condition called \uniformity condition", which appeared

in [KP92a].

88 CHAPTER 6. VERIFICATION OF SAFETY PROPERTIES

Let w = t

1

t

2

: : : t

n

be a sequence of transitions from a state s in the global state space

A

G

of the system being analyzed. Let s = s

1

t

1

! s

2

t

2

! s

3

: : :

t

n�1

! s

n

t

n

! s

n+1

be the

sequence of states it goes through. In what follows, \t is independent with all transitions

in w" is an abbreviation for \t is independent in s

i

with t

i

, 1 � i � n".

We have the following.

Lemma 6.8 Let s be a state in A

G

, and let w be a sequence of transitions from s in A

G

.

For all w

i

2 [w]

s

from s in A

G

, let t

i

denote the �rst transition of w

i

. Let Persistent Set(s)

be a nonempty persistent set in s. If none of the t

i

are in Persistent Set(s), then all

transitions in Persistent Set(s) are independent with all transitions in w.

Proof:

The proof is by contradiction. Suppose there exist transitions in w that are dependent

with some transitions in Persistent Set(s) or that are in Persistent Set(s). Let t

k

be the

�rst such transition in w. Hence, all transitions before t

k

in w are independent with all

transitions in Persistent Set(s), and are not in Persistent Set(s).

If t

k

is in Persistent Set(s), then the sequence w

0

= t

k

t

1

: : : t

k�1

t

k+1

: : : t

n

, i.e., the

sequence w where the transition t

k

has been moved to the �rst position, is in [w]

s

, and

t

k

is the �rst transition of a w

i

2 [w]

s

. This contradicts the assumption that none of the

t

i

is in Persistent Set(s).

If t

k

is not in Persistent Set(s), since t

k

is dependent in s

k

with some transition t in

Persistent Set(s), the sequence of transitions t

1

t

2

: : : t

k�1

, which includes only transitions

not in Persistent Set(s) and which leads from s to s

k

in A

G

, is in contradiction with the

fact that Persistent Set(s) is a persistent set in s, by the de�nition of a persistent set (cf.

De�nition 4.1).

Thanks to the \weakly uniform" assumption, we also have the following.

Lemma 6.9 Let s be a state in A

G

, and let w be a sequence of transitions from s in

A

G

. For all w

i

2 [w]

s

from s in A

G

de�ned from a valid conditional dependency relation

that is weakly uniform, let t

i

denote the �rst transition of w

i

. Let Persistent Set(s) be

a nonempty persistent set in s. If none of the t

i

are in Persistent Set(s), then for all

transitions t in Persistent Set(s), we have [w]

s

� [w]

s

0
with s

t

! s

0

.

Proof:

By Lemma 6.8, for all transitions t in Persistent Set(s), t is independent with all

transitions in w from s, and hence w is a sequence from s

0

in A

G

, with s

t

! s

0

.

6.3. TRACE AUTOMATA 89

By de�nition, all w

0

2 [w]

s

0
can be obtained from w by successively permuting pairs

of adjacent independent transitions. It is thus su�cient to prove that, for any two words

w

1

; w

2

2 [w]

s

0

that di�er only by the order of two adjacent independent transitions, if

w

1

2 [w]

s

then w

2

2 [w]

s

.

Hence, let us assume that w

1

= t

1

: : : ab : : : t

n

and w

2

= t

1

: : : ba : : : t

n

. We have from

s

0

in A

G

s

0

t

1

! s

1

t

2

! s

2

: : :

t

j

! s

j

a

! s

j+1

b

! s

j+2

: : :

t

n

! s

n

and

s

0

t

1

! s

1

t

2

! s

2

: : :

t

j

! s

j

b

! s

0

j+1

a

! s

j+2

: : :

t

n

! s

n

:

Consider the states s

00

; s

000

and s

0000

in A

G

such that s

t

1

:::t

j

) s

00

a

! s

000

b

! s

0000

. Since

t is in Persistent Set(s) and since none of the �rst transitions t

i

of a w

i

2 [w]

s

are in

Persistent Set(s), by Lemma 6.8, t is independent with all transitions in w. This implies

that t and a are independent in s

00

, and that t and b are independent in s

000

. Moreover, we

have s

00

t

! s

j

. Since t is independent with a in s

00

and independent with b in s

000

, and that

a and b are independent in s

j

, a and b are independent in s

00

since the valid dependency

relation considered is weakly uniform. Consequently, w

2

2 [w

1

]

s

= [w]

s

.

Lemma 6.10 Let s be a state that is visited during the search performed by the algorithm

of Figure 6.2. When s is backtracked, let H(s):Sleep denote the sleep set stored with s

in H, and let A

R

denote the reduced state space that has been explored so far. Let w be

a nonempty sequence of transitions from s in A

G

. For all w

i

2 [w]

s

from s in A

G

, let t

i

denote the �rst transition of w

i

. If none of the t

i

are in H(s):Sleep, then there exists a

state s

0

in A

R

such that the following conditions hold:

1. s

w

0

) s

0

t

1

! s

00

in A

R

where t

1

is one of the transitions t

i

, and w

0

does not contain

any transitions in w,

2. [ww

0

]

s

= [w

0

w]

s

from s in A

G

, and

3. if we note w

1

= t

1

w

0

1

2 [w]

s

0

, and for all w

0

i

2 [w

0

1

]

s

00

, t

0

i

denotes the �rst transition

of w

0

i

, none of the t

0

i

are in s

00

:Sleep, where s

00

:Sleep denotes the sleep set associated

with s

00

after the execution of t

1

from s

0

.

Proof:

The proof is by induction on the order in which states are backtracked.

Let s

1

be the �rst state that is backtracked during the search. When s

1

is back-

tracked, s

1

has been visited exactly once. Let s

1

:Sleep be the sleep set that was asso-

ciated to s

1

when s

1

was visited. The value of s

1

:Sleep was saved with s

1

in H, and

90 CHAPTER 6. VERIFICATION OF SAFETY PROPERTIES

thus we have H(s

1

):Sleep = s

1

:Sleep. During this visit of s

1

, a call to the function Per-

sistent Set Satisfying Proviso was performed. Let Persistent Set Satisfying Proviso(s

1

)

denote the persistent set in s

1

satisfying the proviso that was returned. If there exists a

transition t in Persistent Set Satisfying Proviso(s

1

) such that t 62 s

1

:Sleep and s

1

t

! s

0

and s

0

62 Stack, such a transition t would have been executed from s

1

, and s

0

would

have been backtracked before s

1

, which is impossible. Therefore, because of the proviso,

we know that all enabled transitions not in s

1

:Sleep have been executed from s

1

(they

all lead to states in the Stack). Among these, let t

1

be the �rst transition t

i

that has

been executed from s

1

(we know that all transitions t

i

have been executed from s

1

since

8t

i

: t

i

62 s

1

:Sleep). Let s

00

be the state reached after executing t

1

from s

1

: s

1

t

1

! s

00

. We

have w

1

= t

1

w

0

1

. Let s

00

:Sleep be the sleep set associated with s

00

after the execution of

t

1

from s

1

. Let us show that, for all w

0

i

2 [w

0

1

]

s

00

, the �rst transition t

0

i

of w

0

i

is not in

s

00

:Sleep.

Indeed, assume the opposite, i.e., there exists some transition t

0

i

2 s

00

:Sleep such that

t

0

i

is the �rst transition of a w

0

i

2 [w

0

1

]

s

00

. This implies that t

0

i

and t

1

are independent in

s

1

, else t

0

i

would not have been passed on to the sleep set associated to s

00

. Since they

are independent in s

1

, t

0

i

is enabled in s

1

and is the �rst transition of a path w

i

. Given

that t

0

i

is in s

00

:Sleep, either t

0

i

was in s

1

:Sleep or was added after being executed from

s

1

. The �rst possibility is in contradiction with the fact that t

0

i

is also the �rst transition

of some w

i

2 [w]

s

1

and thus is assumed not to be in s

1

:Sleep. The second possibility

is incompatible with the fact that t

1

, not t

0

i

, is the �rst transition among the t

i

to be

executed from s

1

.

Therefore, the lemma holds for the �rst backtracked state s

1

with w

0

= �. Now, let us

prove that, if the lemma holds for the (n� 1)st backtracked states, then it holds for the

nth backtracked state s

n

. Two cases are possible: either s

n

has never been backtracked

before, or it has already been backtracked during the search. We consider these two cases

successively.

If s

n

is backtracked for the �rst time, s

n

has been visited exactly once. Let s

n

:Sleep

be the sleep set that was associated to s

n

when s

n

was visited. The value of s

n

:Sleep

was saved with s

n

in H, and thus we have H(s

n

):Sleep = s

n

:Sleep. During this (�rst)

visit of s

n

, a call to the function Persistent Set Satisfying Proviso was performed. Let

Persistent Set Satisfying Proviso(s

n

) denote the persistent set in s

n

satisfying the proviso

that was returned. If at least one transition t

i

is in Persistent Set Satisfying Proviso(s

n

),

t

i

has been explored from s

n

since we know t

i

62 s

n

:Sleep. By considering the �rst t

i

which has been explored from s

n

during this visit, and by applying a reasoning iden-

tical to the one done above for s

1

, one concludes that the lemma holds for s

n

. Con-

sider the case where 8t

i

: t

i

62 Persistent Set Satisfying Proviso(s

n

). This means that

there exists at least one transition enabled in s

n

and not in s

n

:Sleep that has not been

6.3. TRACE AUTOMATA 91

explored from s

n

. Hence, because of the proviso, there exists a transition t 2 Persis-

tent Set Satisfying Proviso(s

n

) such that t 62 s

n

:Sleep, s

n

t

! s and s 62 Stack. Since

8t

i

: t

i

62 Persistent Set Satisfying Proviso(s

n

), by lemma 6.8, t is independent with all

transitions in w. Therefore, w is a sequence of transitions from s in A

G

. Moreover, by

Lemma 6.9, we know that [w]

s

n

� [w]

s

. Since none of the �rst transitions of sequences in

[w]

s

n

are in s

n

:Sleep and since none of them are executed from s

n

, none of the �rst tran-

sitions of sequences in [w]

s

are in the sleep set s:Sleep that is associated with s after the

execution of t from s

n

. Since s 62 Stack, when s

n

is backtracked, s has already been vis-

ited with the sleep set s:Sleep, and has already been backtracked. Consequently, none of

the �rst transitions of sequences in [w]

s

are in H(s):Sleep (since H(s):Sleep � s:Sleep).

By applying the inductive hypothesis to state s with w as sequence of transitions in A

G

,

we know there exists a state s

0

in A

R

such that s

w

0

) s

0

and s

0

t

1

! s

00

in A

R

where t

1

denotes one of the transitions t

i

, [ww

0

]

s

= [w

0

w]

s

from s in A

G

, and if we note w

1

= t

1

w

0

1

,

for all the �rst transitions t

0

i

of a w

0

i

2 [w

0

1

]

s

00

, t

0

i

62 s

00

:Sleep, where s

00

:Sleep denotes the

sleep set associated with s

00

after the execution of t

1

from s

0

. Since t is independent with

all transitions in w, we have [tw

0

w]

s

n

= [tww

0

]

s

n

= [wtw

0

]

s

n

. Consequently, the lemma

holds in s

n

.

Finally, consider the case where s

n

has already been backtracked during the search.

Let H

old

(s

n

):Sleep be the sleep set stored with s

n

in H the previous time s

n

was

backtracked. We know that H(s

n

):Sleep � H

old

(s

n

):Sleep (the sleep set stored with

a state can only shrink between successive visits of that state). If for all transitions

t

i

,t

i

62 H

old

(s

n

):Sleep, the inductive hypothesis can be applied to state s

n

already back-

tracked with H

old

(s

n

):Sleep as sleep set stored with it in H, which directly proves

the lemma for state s

n

with H(s

n

):Sleep. Else, there exists a transition t

i

such that

t

i

2 H

old

(s

n

):Sleep. Since t

i

62 H(s

n

):Sleep, t

i

has been removed from H

old

(s

n

):Sleep,

and has been executed from s

n

during the last visit of s

n

. If there are several such transi-

tions t

i

, consider the �rst one t

1

which has been executed at this last visit. Let s

00

be the

state reached after executing t

1

from s

n

. The sleep set s

00

:Sleep associated with s

00

after

the execution of t

1

from s

n

is computed from the sleep set H(s

n

):Sleep, which does not

contain any transitions t

i

. Therefore, by applying the same reasoning as the one done

above for s

1

, one concludes that the lemma holds for s

n

with H(s

n

):Sleep.

Theorem 6.11 Let s be a state in the reduced state space A

R

explored by the algorithm

of Figure 6.2. Let H(s):Sleep denote the sleep set stored with s in H once the search is

completed. Let w be a sequence of transitions from s in A

G

. For all w

i

2 [w]

s

from s in

A

G

, let t

i

denote the �rst transition of w

i

. If none of the t

i

are in H(s):Sleep, then there

exists a sequence w

0

of transitions from s in A

R

such that w 2 Pref([w

0

]

s

).

92 CHAPTER 6. VERIFICATION OF SAFETY PROPERTIES

Proof:

The proof proceeds by induction on the length of w. For jwj = 0, the result is

immediate. Now, assume the theorem holds for paths (sequences of transitions) of length

n � 0 and let us prove that it holds for a path w of length n+ 1. For all w

i

2 [w]

s

from

s in A

G

, let t

i

denote the �rst transition of w

i

.

Once the search is completed, all states in A

R

have been backtracked. By applying

lemma 6.10 to state s, we know that there exists a state s

0

in A

R

such that s

w

0

) s

0

t

1

! s

00

in A

R

where t

1

denotes one of the transitions t

i

, [ww

0

]

s

= [w

0

w]

s

from s in A

G

, and if

we note w

1

= t

1

w

0

1

, for all the �rst transitions t

0

i

of a w

0

i

2 [w

0

1

]

s

00

, t

0

i

62 H(s

00

):Sleep.

This implies that w is a sequence in A

G

from all intermediate states reached by w

0

from s, including s

0

. From the successor state s

00

of s

0

by t

1

, there is a sequence w

0

1

in A

G

such that w

1

= t

1

w

0

1

2 [w]

s

0

. Since jw

0

1

j = n, and since 8t

0

i

: t

0

i

62 H(s

00

):Sleep,

by applying the inductive hypothesis to state s

00

, we know there exists a sequence w

00

explored from s

00

in A

R

such that w

0

1

2 Pref([w

00

]

s

00

). In other words, there exists a

sequence w

000

from s

00

in A

G

such that w

000

2 [w

00

]

00

s

and w

000

= w

0

1

w

suff

. From state s, we

know that the sequence w

0

t

1

w

00

is explored in A

R

. From s, we have in A

G

: [w

0

t

1

w

00

]

s

=

[w

0

t

1

w

000

]

s

= [w

0

t

1

w

0

1

w

suff

]

s

= [w

0

ww

suff

]

s

(since [w]

s

0

= [t

1

w

0

1

]

s

0

) = [ww

0

w

suff

]

s

(since

[w

0

w]

s

= [ww

0

]

s

). Obviously, w 2 Pref([ww

0

w

suff

]

s

), and thus w 2 Pref([w

0

t

1

w

00

]

s

),

w

0

t

1

w

00

being explored in A

R

from s.

We can now easily prove the following.

Theorem 6.12 Let A

G

be the global state space of a given system, and let A

R

be the

reduced state space explored by the algorithm of Figure 6.2 for this system. Then, A

R

is

a trace automaton for the system considered.

Proof:

By applying Theorem 6.11 in the initial state s

0

of A

R

and by De�nition 6.4, one

directly obtains that A

R

is a trace automaton, since H(s

0

):Sleep = ;.

6.4 Properties of Trace Automata

Many interesting properties of a concurrent system can be checked on a trace automaton

for this system.

Theorem 6.13 Let A

G

be the global state space of a system, and let A

R

be a trace

automaton for this system. For all t 2 T , t is executed in A

G

i� t is executed in A

R

.

6.4. PROPERTIES OF TRACE AUTOMATA 93

Proof:

Let t be a transition that occurs in A

G

. Therefore, there exists a sequence w of tran-

sitions from s

0

in A

G

that leads to a state s in A

G

such that s

t

! s

0

. By de�nition of

a trace automaton, there exists a sequence w

0

of transitions from s

0

in A

R

such that w

0

is a linearization of a trace de�ned by an extension of wt. Consequently, t occurs in w

0

,

and thus in A

R

.

The other direction of the theorem is immediate to establish since all sequences of tran-

sitions in A

R

are sequences of transitions in A

G

.

The following theorem states that the reachability of local states can also be checked

on a trace automaton.

Theorem 6.14 Let A

G

be the global state space of a system, and let A

R

be a trace

automaton for this system. For all processes P

i

, for all local states l 2 P

i

, l is reachable

from the initial state s

0

in A

G

i� l is reachable from s

0

in A

R

.

Proof:

By de�nition, a local state l 2 P

i

is reachable from the initial state s

0

in A

G

i� there

exists a global state s that is reachable from s

0

in A

G

, and such that s(i) = l. Since l is

reachable from s

0

in A

G

, let w be the shortest sequence of transitions from s

0

to a state

s in A

G

such that s(i) = l. We have

s

0

t

1

! s

1

t

2

! s

2

: : :

t

n�1

! s

n�1

t

n

! s:

We know that s

n�1

(i) 6= l, else w would not be the shortest path leading from s

0

to l.

Therefore, process P

i

is active for transition t

n

, and l 2 post(t

n

). By Theorem 6.13, we

know that there exists a state s

0

in A

R

from which the transition t

n

is executed in A

R

.

After executing t

n

from s

0

, a state s

00

such that s

00

(i) = l is reached in A

R

.

The other direction of the theorem is immediate to establish since all states in A

R

are

states in A

G

.

Therefore, transitions that are never executed (dead code) can be checked for on a

trace automaton. Moreover, checking if a given condition c, often called an assertion, is

true in a particular local state l of a process P

i

can be done by adding a new local state

l

error

to P

i

and a new transition (l;Not(c); skip; l

error

) to the system. Then, exploring a

trace automaton for the modi�ed system is su�cient to prove that such assertions are

never violated. Many properties can be expressed by using assertions, like for instance,

bu�er overruns (i.e., attempts to send a message to a full queue), unspeci�ed receptions,

etc. Of course, adding transitions to a system introduces dependencies between these

added transitions and other transitions, and has to be done as carefully as possible.

94 CHAPTER 6. VERIFICATION OF SAFETY PROPERTIES

Global properties, i.e., properties that involve more than one process, can be checked

by making them local as follows. If a property is not local to a process, one introduces an

additional process in the system to which it is local. For instance, checking an invariant,

i.e., if a given condition inv remains true in all states of A

G

, can be done by adding a

process P

i

= fl; l

error

g with a single transition (l;Not(inv); skip; l

error

) testing the truth

value of the condition inv.

More generally, the veri�cation of any safety property can be reduced to checking the

reachability of a local state as follows [GW91b]. Safety properties can be represented by

pre�x closed automata on �nite words [AS87]. We assume such a representation A

S

and

proceed as follows:

1. Build the automaton A

:S

corresponding to the complement of A

S

. Since A

S

is

pre�x closed, A

:S

is an automaton with only one accepting state (denoted X).

2. Check if the local state X is reachable in the new concurrent system composed of

the original system and of the automaton A

:S

.

Therefore, the veri�cation of any safety property can be performed using a trace automa-

ton A

R

. Note that this framework is still applicable for safety properties represented by

more than one automaton A

:S

.

6.5 Comparison with Other Work

In [Val91], another \proviso" is given to be used with the (strong) stubborn set technique

in order to check for properties more elaborate than deadlocks. More generally, this

proviso can actually be used with all the algorithms computing persistent sets presented

in Chapter 4, not only with the stubborn set algorithm of Section 4.5.

This proviso requires the detection of terminal maximal strongly connected compo-

nents (TMSCC) in the explored reduced state space A

R

, viewed as a directed graph. A

part G of A

R

is a strongly connected component in A

R

if all states in G are reachable

from all states in G. A strongly connected component in A

R

is said to be maximal if

it is not included in any other strongly connected component. A strongly connected

component G is said to be terminal if there is no outgoing transition from it, i.e., if there

is no state not in G that is reachable from a state in G. Checking maximal strongly

connected components in a directed graph can be done by using the well-known algo-

rithm of Tarjan [Tar72, AHU74]. This algorithm is based on a depth-�rst search in the

graph. Its time complexity is linear in the size of the reduced state space A

R

. It requires

the use of an additional stack and the storage of the value of a variable \DFNUMBER",

6.5. COMPARISON WITH OTHER WORK 95

which labels the reachable states in the order they are visited, with each state stored

in randomly accessed memory. (See, e.g., [AHU74] for a complete presentation of this

algorithm.)

The proviso of [Val91] consists in the following modi�cation of the classical persistent-

set selective search not using sleep sets, as shown in Figure 4.1 and performed in a

depth-�rst order. In the following de�nition, the \root" of a TMSCC denotes the last

state in the TMSCC that is backtracked during the depth-�rst selective search.

De�nition 6.15 Each time a state s is backtracked during the search performed by

the algorithm of Figure 4.1, if s is the root of a terminal maximal strongly connected

component TMSCC in A

R

, and if there are transitions t that are enabled in s and never

executed from any state in TMSCC, then another persistent set in s that contains at

least one of such transitions t is computed, and the search continues from s to explore

the transitions of this new persistent set that have not already been explored from s.

Since the union of two persistent sets in s is a persistent set in s (it is easy to see this from

the de�nition of persistent sets), this proviso is also equivalent to a restriction on the per-

sistent sets that can be returned by the function Persistent Set in a persistent-set selective

search. Indeed, everything happens as if the value of Persistent Set(s) was computed by

successive approximations during the exploration of A

R

(the value of Persistent Set(s) is

augmented if s is currently the root of a TMSCC).

It can be proved that the following theorem holds in all states in the reduced state

space A

R

explored by a persistent-set selective search using the above proviso (similar to

Theorem 2.29 of [Val91]).

Theorem 6.16 Let A

G

be the global state space of a system, and let A

R

be the reduced

state space explored by a persistent-set selective search, as shown in Figure 4.1, using the

proviso of De�nition 6.15. Let s be a state in A

R

. For all sequences w of transitions from

s in A

G

, there exists a sequence w

0

of transitions from s in A

R

such that w 2 Pref([w

0

]

s

).

Obviously, reduced state spaces A

R

that satisfy the above theorem are trace automata.

But the converse is not true, since the above theorem holds in all states in A

R

, while

the de�nition of trace automata requires that it holds only in the initial state s

0

of

A

R

. Therefore, the above theorem is stronger than is necessary for proving all the

properties considered in the previous Section. The notion of trace automaton is weaker

while su�cient for checking these properties, and thus allows more reduction in A

R

.

Note that the proviso of De�nition 6.2 can also be used without sleep sets, i.e., in

conjunction with a persistent-set selective search, as shown in Figure 4.1. In this case,

96 CHAPTER 6. VERIFICATION OF SAFETY PROPERTIES

the �rst condition of the proviso of De�nition 6.2 merely becomes that the set Persis-

tent Set(s) returned by the function Persistent Set has to contain at least one transition

not leading to the current Stack, and the \weakly uniform" assumption on the depen-

dency relation used is no longer necessary. Indeed, by considering again the proofs given

in Section 6.3 in the case where all sleep sets are always empty, one directly obtains a

proof that the reduced state spaces A

R

explored by a persistent-set selective search using

this modi�ed proviso are trace automata, and, moreover, that they satisfy Theorem 6.16.

In the case where sleep sets are not used, which one of these two provisos is then the

\best"? If the explored reduced state space A

R

does not contain any terminal maximal

strongly connected components TMSCC such that there are transitions t that are en-

abled in a state in TMSCC and never executed from any state in TMSCC, then the

proviso of De�nition 6.15 will not force the selection of any additional transition, and its

impact on A

R

will be void; on the other hand, the proviso of De�nition 6.2 modi�ed as

described above might force the selection of additional transitions if A

R

contains cycles.

If during the search there are terminal maximal strongly connected components TMSCC

such that there are transitions t that are enabled in a state in TMSCC and never ex-

ecuted from any state in TMSCC, both provisos will force the selection of additional

transitions and will have an impact on A

R

. In this case, it is impossible to predict which

proviso will yield the smaller A

R

. Indeed, intuitively, the additional transitions forced

by the proviso of De�nition 6.2 will be executed from the �rst backtracked state of the

TMSCC, while the additional transitions forced by the proviso of De�nition 6.15 will be

executed from the root of the TMSCC, i.e., the last backtracked state of the TMSCC.

Hence, the two A

R

that are obtained will then not be comparable in general (in the sense

that one of them is not included in the other). Consequently, there is no \best" proviso:

overall, it is impossible to predict which proviso will explore the smaller reduced state

space.

Note that the proviso of De�nition 6.2 is much simpler to implement than the proviso

of De�nition 6.15. Moreover, it does not require the use of any additional data structure.

Finally, note that the proviso of De�nition 6.15 is not compatible with sleep sets.

In [GW91b, GW93], the reachability of a local state l of a process P

i

(and hence

the veri�cation of any safety property) is reduced to the deadlock detection problem

by a transformation of the system description. This transformation consists of adding

transitions in the original system (see [GW91b]). The new dependencies introduced in

the system by these additional transitions ensure that if the local state l one is interested

in is reachable from the initial state s

0

, it will be visited during a selective search, without

the need of any proviso.

It is not known whether the method of [GW91b] gives better reductions than the use

of the proviso of De�nition 6.2. An advantage of using a proviso during a selective search,

6.5. COMPARISON WITH OTHER WORK 97

and thus of generating a trace automaton, is that many properties (assertion violations,

dead code, deadlocks, etc.) can be checked simultaneously during the same selective

search. On the other hand, the transformation of the system described in [GW91b]

depends on the local state l to be checked: the transitions that are added to the system

during this transformation are there to prevent the selective search from missing l, if it is

reachable, but are not su�cient for checking any other local states than l. The method

of [GW91b] is thus more goal-oriented.

Finally note that the proviso of De�nition 6.2 is simpler to implement than the system

transformation of [GW91b].

98 CHAPTER 6. VERIFICATION OF SAFETY PROPERTIES

Chapter 7

Model Checking

7.1 Beyond Safety Properties

Safety properties cover most of the properties of concurrent reactive systems that are

veri�ed in practice. It is nevertheless worth studying how partial-order methods can be

adapted for checking liveness properties. Intuitively, whereas a safety property stipulates

that \bad things" do not happen, a liveness property stipulates that \good things"

do eventually happen [Lam77]. For instance, a liveness property can specify that each

process of a concurrent systemmust always be able to eventually progress from its current

local state. Such a property cannot be checked by only considering the �nite behaviors

of the system, as is the case for a safety property. Indeed, only in�nite behaviors of the

system can violate the above property.

Representing liveness properties and checking in�nite behaviors of concurrent systems

require the use of concepts and algorithms that are more complex than those for veri-

fying safety properties. In this Chapter, we discuss various techniques [Val90, GW91a,

Pel93, Val93, Pel94, GW94] that have been proposed for the veri�cation of liveness prop-

erties in the context of partial-order methods. Speci�cally, these techniques address the

model-checking problem for linear-time propositional temporal logic [MP92]. Linear-time

temporal-logic formulas can be used for specifying properties of in�nite behaviors of a sys-

tem, including arbitrary liveness properties. Given a concurrent system and a linear-time

temporal-logic formula f , checking that all in�nite computations of the system satisfy f

is referred to as the model-checking problem.

The techniques presented in [Val90, GW91a, Pel93, Val93, Pel94, GW94] di�er by the

assumptions they make about the representation of the property to be checked, and by

the veri�cation strategies they adopt. In this Chapter, we briey present these tech-

niques, and relate them with each other. We point out the key problems underlying the

99

100 CHAPTER 7. MODEL CHECKING

veri�cation of liveness properties using partial-order methods, and compare the solutions

that have been proposed for solving these problems. We also show how the proposed

techniques complement each other.

7.2 Automata and Model Checking

To solve the model-checking problem, the only fact we need about linear-time temporal

logic is that, for each formula f , it is possible to build a B�uchi automaton A

f

that accepts

exactly the in�nite words satisfying the temporal formula f [WVS83]. Formally, a B�uchi

automaton[B�uc62] is a tuple A = (�; S;�; s

0

; F), where

� � is an alphabet,

� S is a set of states,

� � � S � �� S is a transition relation,

� s

0

2 S is the initial state, and

� F � S is a set of accepting states.

A B�uchi automaton is thus an automaton as de�ned in Section 2.2 augmented with a

set F of accepting states. B�uchi automata are used to de�ne languages of !-words, i.e.,

functions from the ordinal ! to the alphabet �. Intuitively, a word is accepted by a B�uchi

automaton if the automaton has an in�nite execution that intersects set F in�nitely often.

Formally, we de�ne a computation � of A over an !-word w = a

1

a

2

: : : as an !-sequence

� = s

0

; s

1

; : : : (i.e., a function from ! to S) where (s

i�1

; a

i

; s

i

) 2 �, for all i � 1. A

computation � = s

0

; s

1

; : : : is accepting if there is some state in F that repeats in�nitely

often, i.e., for some state x 2 F there are in�nitely many i 2 ! such that s

i

= x. The

!-word w is accepted by A if there is an accepting computation of A over w.

A construction of a B�uchi automaton A

f

from a formula f can be found in [Wol89] and

in Chapter 4 of [Tha89]. This construction is exponential in the length of the formula,

but this is usually not a problem since the formulas to be checked are quite short and

since the algorithm often behaves much better than its upper bound.

The veri�cation procedure can then be the following [WVS83, VW86]. (This procedure

is often referred to as the automata-theoretic approach to model-checking.)

1. We �rst build a B�uchi automaton for the negation of the formula f . The resulting

automaton A

:f

= (�

:f

; S

:f

;�

:f

; s

0:f

; F

:f

) accepts all sequences of states that

violate f .

7.2. AUTOMATA AND MODEL CHECKING 101

2. Then we compute the product automaton A

G

of the original system and of the

automaton A

:f

in such a way that the product automaton accepts all in�nite

computations of the system that are accepted by the automaton A

:f

, i.e., all com-

putations of the system that violate the formula f .

3. Finally, we check if the automaton A

G

is empty, i.e., if it does not accept any

sequence. If A

G

is empty, we have proven that all in�nite computations of P

satisfy the formula f .

Of course, if the negation of the property A

:f

is directly provided by the user, the �rst

step of the above procedure can be skipped.

Checking if the B�uchi automaton A

G

is nonempty amounts to checking if there exists

a cycle in A

G

(viewed as a graph) that is reachable from the initial state s

0

and that

contains an accepting state. Actually, it is not necessary to consider all possible cycles

in A

G

, it is su�cient to check if A

G

contains at least one maximal (nontrivial) strongly

connected component that is reachable from the initial state and that includes a state

from the set F . Equivalently, a B�uchi automaton is nonempty if it has some accepting

state that is reachable from the initial state and reachable from itself. Several algorithms

can be used for checking emptiness of B�uchi automata (see [GH93] for an overview),

which can be done in linear time with respect to the size of the B�uchi automaton. Note

that computing A

G

and checking its emptiness can be done at the same time.

Di�erent de�nitions are possible for the product automaton A

G

. In [GW91a, Val93],

it is assumed that the automaton A

:f

is an additional process that synchronizes with

the other processes of the system on transitions that have the same label, i.e., the same

\action". Precisely, if A

Sys

denotes the global state space of the concurrent system

being veri�ed, the product automaton A

G

of the system A

Sys

= (�

Sys

; S

Sys

;�

Sys

; s

0Sys

)

and of the new process A

:f

= (�

:f

; S

:f

;�

:f

; s

0:f

; F

:f

) is the B�uchi automaton A

G

=

(�; S;�; s

0

; F) de�ned by

� � = �

Sys

[�

:f

,

� S = S

Sys

� S

:f

,

� ((s; t); a; (u; v)) 2 � when

{ a 2 �

Sys

\ �

:f

and (s; a; u) 2 �

Sys

and (t; a; v) 2 �

:f

,

{ a 2 �

Sys

n �

:f

and (s; a; u) 2 �

Sys

and v = t,

{ a 2 �

:f

n �

Sys

and u = s and (t; a; v) 2 �

:f

,

� s

0

= (s

0Sys

; s

0:f

),

� F = S

Sys

� F

:f

.

102 CHAPTER 7. MODEL CHECKING

Actions that appear both in A

Sys

and in A

:f

are synchronized, others are interleaved.

Transitions of A

Sys

that synchronize with A

:f

are said to be visible. In this framework,

transitions of the system and of the property are \synchronized on actions".

In contrast, it is assumed in [Val90, Pel93, Pel94] that the automaton A

:f

is a special

automaton whose transitions test the values of the variables of the system whenever

the system executes a transition. Precisely, if A

Sys

denotes the global state space of

the concurrent system being veri�ed, the product automaton A

G

of the system A

Sys

=

(�

Sys

; S

Sys

;�

Sys

; s

0Sys

) and of the automaton A

:f

= (�

:f

; S

:f

;�

:f

; s

0:f

; F

:f

) is the

B�uchi automaton A

G

= (�; S;�; s

0

; F) de�ned by

� � = �

:f

,

� S = S

Sys

� S

:f

,

� ((s;w); a; (u; v)) 2 � when (s; t; u) 2 �

Sys

; (w; a; v) 2 �

:f

and a evaluates to true

in state s of A

Sys

,

� s

0

= (s

0Sys

; s

0:f

),

� F = S

Sys

� F

:f

.

Transitions of the system that can a�ect the truth value of any state predicate appearing

in the formula are said to be visible. In this framework, transitions of the system and of

the property are \synchronized on states".

Note that the automata-theoretic approach to model checking has the advantages of

\on-the-y veri�cation". By this, we mean that we build the automaton A

G

for the com-

bination of the system and the property without ever building the automaton A

Sys

for the

system. Maybe surprisingly, the product automaton can be smaller than the automaton

for the system alone because the property acts as a constraint on the behavior of the sys-

tem. This approach of model checking thus has a head start over other approaches that

require the automaton A

Sys

to be built. In the context of partial-order methods, we will

see that another advantage of the automata-theoretic approach is that the structure of

the automaton A

:f

and its current local state can be exploited by partial-order methods

to guide the selective search, and thus to improve its e�ciency. The combination of on-

the-y veri�cation with partial-order methods �rst appeared in [GW91a], and was later

adopted in [Val93, Pel94] (the techniques of [Val90, Pel93] did not follow this paradigm).

7.3 Using Partial Orders for Model Checking

In practice, the limits of all model-checking methods come from the often excessive size

of the product A

G

. In order to use partial-order methods for doing model checking, we

7.3. USING PARTIAL ORDERS FOR MODEL CHECKING 103

would like to be able to proceed as follows.

1. Build a B�uchi automaton for the negation of the formula f . The resulting automa-

ton is A

:f

.

2. Compute a trace automaton A

R

corresponding to the concurrent executions of the

processes of the system, and of the automaton A

:f

.

3. Check if the automaton A

R

is empty.

Note that the temporal property represented by A

:f

can be sensitive to the order of

independent transitions of the system. In the framework where transitions of the system

and of the property are synchronized on actions, the fact that the order of actions that

appear in A

:f

cannot be ignored while exploring the reduced state space is handled by

treating A

:f

as any other process of the concurrent system [GW91a].

In the framework where transitions of the system and of the property are synchro-

nized on states, the problem can be solved by considering all visible transitions (i.e., all

transitions that can a�ect the truth value of any state predicate appearing in the for-

mula) as being dependent, and by restricting the class of properties that can be checked

to stuttering-invariant properties [Val90]. Informally, stuttering-invariance means that

the truth value of a formula on an in�nite sequence of states does not change if states

in the sequence are repeated a �nite number of times [Lam83]. Prohibiting stuttering

is important in this framework since, without this restriction, all transitions could po-

tentially a�ect the truth value of the formula, and hence would have to be considered

as dependent, which would annihilate any bene�t coming from the use of partial-order

methods. In linear-time temporal logic, a simple way to restrict the properties that can

be expressed in the logic to stuttering-invariant properties is to disallow the use of the

\next" temporal operator [Lam83].

Once the above requirements are satis�ed, can a trace automaton A

R

for the system

replace the product A

G

for model checking?

It was shown in [GW91a] that a trace automaton A

R

can be used for checking that all

in�nite behaviors of the system that contain an in�nite number of occurrences of visible

transitions satisfy the given property. In this case, verifying liveness properties can thus

be done on the same reduced state space as for verifying safety properties.

If one is also interested in considering the in�nite behaviors of the system that contain

only a �nite number of occurrences of visible transitions, using a trace automaton is not

su�cient. It is then necessary to preserve more states and transitions in the reduced

state space explored by a selective search. Several provisos have been proposed for this

104 CHAPTER 7. MODEL CHECKING

purpose. These provisos thus also preserve in A

R

the presence of at least one cycle of

invisible transitions that passes through an accepting state, if there exists one in A

G

.

The �rst such proviso that has been proposed [Val90] was intended to be used in

conjunction with the stubborn set technique (cf. Section 4.5), but can actually be used

with other persistent-set algorithms as well. This proviso requires that:

1. at each state s reached during the search, if there is an enabled invisible transition,

at least one invisible transition is executed from s in A

R

; and

2. every cycle in A

R

contains at least one state s that satis�es the following condition:

the transitions explored from s in A

R

are the enabled transitions of a stubborn set

containing all visible transitions.

Intuitively, the �rst requirement preserves in A

R

cycles of invisible transitions, while the

second requirement ensures that, when exploring these cycles, visible transitions are not

\ignored". In [Val90], an algorithm is given to detect cycles in A

R

that do not satisfy

Requirement 2 above. When such a cycle is detected, this algorithm forces the selection

of new transitions from one of the states in the cycle to make it satisfy Requirement 2.

Another solution to satisfy Requirement 2 is to systematically select at each visited

state the enabled transitions in a stubborn set containing all visible transitions [Val93].

However, this radical solution is very restrictive since it always forces the selection of

a very speci�c type of persistent set at each visited state. This prevents the selection

of many other persistent sets, including smaller ones, which is strongly in contradiction

with the heuristics presented in Chapter 4. Therefore, the practicality of this solution

seems problematic.

Yet another solution to ensure Requirement 2, presented in [Pel94], is to prevent the

selective search from closing cycles except from states where all enabled transitions are

executed. In other words, at each visited state, the selected persistent set either has to

contain exclusively transitions not leading to the current Stack, or has to be the set of

all enabled transitions. This proviso can thus be viewed as a more restrictive version of

the proviso of De�nition 6.2, which was used for verifying safety properties.

Due to the lack of experimental data, it is not known how the performances of these

di�erent provisos for ensuring Requirement 2 compare with each other.

Note that, when model-checking is performed on-the-y, it is possible to optimize

the selective search by using information about the current local state of A

:f

and the

next transitions that can be executed from it. In the framework where transitions of the

system and of the property are synchronized on actions, it is shown in [Val93] that it

is necessary to ensure the �rst requirement only when the current local state of A

:f

is

accepting, while it is necessary to enforce a proviso for ensuring Requirement 2 only when

7.4. MODEL CHECKING WITH FAIRNESS ASSUMPTIONS 105

the current local state of A

:f

is not accepting. In the framework where transitions of

the system and of the property are synchronized on states, it is shown in [Pel94] how the

transitions outgoing from the current local state of A

:f

can be used to limit the number

of transitions that need be explored.

7.4 Model Checking with Fairness Assumptions

It is useful in veri�cation to take into account speci�c assumptions about the context in

which processes of a concurrent system are executed. For instance, if concurrent processes

are executed on di�erent processors, it is customary to assume that, if a process has a

transition that remains enabled, it will eventually execute it. This assumption is often

referred to as weak fairness [MP92]. Various notions of fairness have been studied [Fra86,

MP92]. The main purpose of these notions is to exclude behaviors of the concurrent

system that would not be allowed by the speci�c type of process scheduler that is assumed.

The fairness assumptions then act as �lters, removing certain classes of in�nite behaviors

that conict with the assumptions made about the process scheduler.

Like liveness properties, fairness assumptions can be modeled by linear-time temporal-

logic formulas [LP85], or by B�uchi automata [ACW90]. If fairness assumptions are mod-

eled by a formula f

0

, the veri�cation problem amounts to checking that all in�nite behav-

iors of the system satisfy the formula f

0

� f (where � denotes logical implication), which

can be done as described in the previous section. If fairness assumptions are modeled

by B�uchi automata A

fair

that are synchronized with the processes of the system

1

, the

de�nition of the product automaton A

G

of the system, of the automata A

fair

, and of the

automaton A

:f

slightly di�er from those given in Section 7.2 (since there are now several

B�uchi automata in the product), but the veri�cation problem can be reduced again to

checking the emptiness of A

G

[GW91a].

At �rst glance, the interaction of the modeling of fairness assumptions and of partial-

order methods is problematic since fairness assumptions often concern all processes in-

volved in the system and hence may introduce many dependencies, which can wipe out

the bene�t of using partial-order methods. A solution to avoid this problem is to repre-

sent fairness assumptions in a distributed way, by assigning progress conditions to each

process individually [GW91a]. This is equivalent to model fairness assumptions by a

set of B�uchi automata such that each B�uchi automaton synchronizes with at most one

process in the system. Such a way, fairness assumptions do not introduce any additional

dependency among the transitions of the concurrent system [GW91a].

1

Another similar possibility is to directly specify acceptance sets for the processes in the system, thus

to de�ne the system as being a product of B�uchi automata [ACW90].

106 CHAPTER 7. MODEL CHECKING

Note that the product of two B�uchi automata accepts the intersection of the lan-

guages accepted by these two automata, and hence its e�ect is equivalent to a logical

conjunction in temporal logic. Consequently, the translation of the solution given above

in the temporal logic world becomes that, if a formula f is a conjunction of sub-formulas

f

i

, transitions of the system that can a�ect sub-formula f

k

need not be considered as

being dependent with transitions that can a�ect sub-formula f

l

, with k 6= l, although

these transitions are all visible. This observation also appeared in [Pel93] where it is

recommended that each temporal-logic formula to be checked should be rewritten in an

equivalent form with as many as possible boolean operators at the outermost levels of

the formula, in order to express it as a conjunction of sub-formulas, which can then be

treated separately when adding dependencies among visible transitions of the concurrent

system.

Once the above requirements are satis�ed, can a trace automaton A

R

for the system

replace the product automaton A

G

for model checking with fairness assumptions? The

answer to this question is negative because in�nite computations involving more than

one process are not necessarily preserved in A

R

[GW91a]. Indeed, it is quite possible

that the automaton A

G

accepts some fair behavior of the system whereas A

R

does not

accept any fair behavior. This might seem counter-intuitive because one could expect

that, if A

G

accepts some word w, then by permuting independent transitions of w, one

would obtain an accepting computation of A

R

, which would then be nonempty. This is

actually true for �nite computations but not for in�nite computations. Indeed, consider

two processes that are totally independent. A trace automaton for these two processes

can be one that allows any number of transitions of the �rst process followed by any

number of transitions of the second process. This is is �ne for �nite computations, but

for in�nite computations, one will be left with either an in�nite computation of the �rst

process or one of the second process, but not an in�nite computation of both processes.

One can summarize this by saying that A

R

represents the in�nite computations of all

processes, but not the joint in�nite computations of unsynchronized processes [GW91a].

Trace automata do not adequately represent the !-computations of the components

from which they are built because in�nite computations cannot be concatenated. Ac-

tually, with the help of a little abstraction, in�nite computations could very well be

concatenated. One can simply think of computations whose length is an ordinal larger

than !. This idea has been investigated in [GW91a, GW94]. Precisely, automata operat-

ing on words of length ! � n, n 2 !, were de�ned and studied. It was shown that, when

they are viewed as !�n-automata, trace automata can be used for model checking with

fairness assumptions. However, it is necessary to use a new model-checking algorithm,

that checks for sequences of strongly connected components in trace automata.

Instead of using trace automata and a new, more complicated, model-checking algo-

7.4. MODEL CHECKING WITH FAIRNESS ASSUMPTIONS 107

rithm, another solution consists in using an additional proviso during state-space explo-

ration that ensures that enough states and transitions are preserved in the reduced state

space A

R

to make possible the use of classical model-checking algorithms on A

R

. This is

the approach adopted in [Pel93, Pel94], where a proviso is given for model-checking with

fairness assumptions. This proviso forces the traversal of \fair cycles" by preventing the

selective search to close cycles except from states from which all enabled transitions are

executed. This proviso increases the size of the reduced state space that is explored, but

is easy to implement.

108 CHAPTER 7. MODEL CHECKING

Chapter 8

Experiments

8.1 How Can Partial-Order Methods Be Evaluated?

How much can one gain by using the methods described in this thesis? It is very dif-

�cult to give a general answer. Indeed, one can quite easily construct families of sys-

tems for which nothing is gained whatsoever. Examples of such systems are systems

where the coupling between the processes is so tight that two independent transitions

are never simultaneously enabled. (The system is in fact purely sequential.) In this case,

partial-order methods yield no reduction, and the selective search becomes equivalent to

a classical exhaustive search.

On the other hand, it is also easy to construct systems for which the growth of the state

space when the number of processes in the system increases is reduced from exponential to

polynomial by a selective search. This is the case, for instance, for the dining-philosophers

system of Section 2.3. The number of states in the global state space A

G

and in the

reduced state space A

R

explored by a selective search using persistent sets and sleep sets

(without proviso) are given in Figure 8.1 for various numbers of philosophers (logarithmic

scale).

Going one step further, it is also easy to �nd examples of systems for which the global

state space increases in size when the value of some parameter grows, while the reduced

state space remains the same. For instance, consider the following \producer-consumer"

example.

Example 8.1 Consider a system containing a process \producer" P = fp

0

g and a pro-

cess \consumer" C = fc

0

g, an object \bounded FIFO channel" of size N = 1000, denoted

q, as considered in Examples 3.20 and 4.29, and two transitions

t

1

= (p

0

; Not(Full(q)); Send(q;m); p

0

), t

2

= (c

0

; Not(Empty(q)); Receive(q); c

0

);

109

110 CHAPTER 8. EXPERIMENTS

1

10

100

1000

10000

100000

1e+06

2 4 6 8 10 12

Philosophers

A

R

A

G

States

Figure 8.1: Reduction due to partial-order methods for dining philosophers

where it is assumed that Send(q;m) denotes a command that performs a Send operation

on the object q with m as input, Receive(q) denotes a command that performs a Receive

operation on the object q (the output of the Receive operation on q is discarded here),

Full(q) denotes a boolean condition equivalent to the value returned by the execution

of a Full operation on object q, and Empty(q) denotes a boolean condition equivalent

to the value returned by the execution of an Empty operation on object q. Let s

0

=

(p

0

; c

0

; ()) 2 P �C�V

q

be the initial state of the producer-consumer system (q is initially

empty). Let us investigate what the reduced state space A

R

explored by a selective search

using persistent sets could be. In state s

0

, only transition t

1

is enabled. After executing

this transition, state s

1

= (p

0

; c

0

; (m)) is reached. In state s

1

, both transitions t

1

and t

2

are enabled. Moreover, the set ft

2

g is a persistent set in s

1

. After executing t

2

from s

1

,

state s

0

is reached again, and the exploration of A

R

stops. This reduced state space A

R

is shown in Figure 8.2. Dotted transitions are not in A

R

. Clearly, A

R

is independent of

the value of N , while the size of A

G

is proportional to N . If N =1, i.e., if the channel

(bu�er) is unbounded, A

R

is �nite, while the global state space A

G

is in�nite.

Clearly, by a biased choice of examples, an arbitrarily exaggerated impression of the

improvements could thus be suggested. For instance, by setting the number of philoso-

phers to a su�ciently large number, we can claim that we can check systems with astro-

8.2. A PARTIAL-ORDER PACKAGE FOR SPIN 111

(p

0

; c

0

; ()) (p

0

; c

0

; (m)) (p

0

; c

0

; (mm))

t

1

t

2

t

2

t

1

Figure 8.2: Reduced state space for the producer-consumer problem

nomical numbers of states, like 10

20

states, as is done in [BCM

+

90]. With the producer-

consumer example, we can even claim to be able to check systems with in�nite numbers

of states. Of course, this should be taken with a grain of salt since the fact that checking

only a small part of such enormous state spaces is su�cient only indicates that most of

the states in the global state space are uninteresting. This observation leads us to the

following conclusion: the number of states in the global state space of a system does not

give a good measure of its complexity.

Along the same line of thought, the study of the asymptotic behavior of the function

giving the number of states for di�erent numbers of processes in a system is only of

limited practical interest. Indeed, state-space exploration techniques are rarely used to

verify systems composed of tens of identical processes. For such systems, it is preferable

to use other veri�cation techniques specially tailored for proving properties of systems

with unde�ned numbers of participants (e.g., [KM89, WL89]).

Consequently, experiments with realistic examples, including industrial-size ones, ap-

pear to be the most informative approach to evaluating partial-order veri�cation methods.

8.2 A Partial-Order Package for SPIN

In order to perform experiments on complex concurrent systems, we have implemented

(most of) the algorithms presented in the previous Chapters in an add-on package for

the protocol veri�cation system SPIN.

SPIN is an automated veri�cation system for communication protocols described in

the Promela language [Hol91]. Promela is a full nondeterministic guarded-command

language. Promela de�nes systems of asynchronously executing concurrent processes that

can interact via shared variables and message channels. Interaction via message channels

can be either synchronous (i.e., by rendez-vous) or asynchronous (bu�ered) with arbitrary

112 CHAPTER 8. EXPERIMENTS

(user-speci�ed) bu�er capacities, and arbitrary numbers of message parameters. These

di�erent types of communication can be combined. Given a concurrent system described

by a Promela program, SPIN can verify properties of the system by performing a classical

depth-�rst search in the global state space of the system. By default, SPIN checks for

deadlocks, dead code, and violations of user-speci�ed assertions (cf. Chapter 6).

The partial-order package we have developed for SPIN checks by default the same

properties as SPIN does, i.e., it checks for deadlocks, dead code, and violations of user-

speci�ed assertions. These properties are checked by exploring only a trace automaton

for the system being analyzed, instead of its global state space. The partial-order pack-

age includes the implementation of a selective search using persistent sets, sleep sets,

and the proviso of De�nition 6.2, as shown in Figure 6.2. For computing persistent sets,

an algorithm similar to Algorithm 2 using the >

s

relation presented in Chapter 4 has

been chosen to be implemented. Indeed, we showed in Chapter 4 that there is no \best"

algorithm for computing persistent sets. For the class of examples we have considered, it

turns out that Algorithm 2 provides a good trade-o� between the complexity of the algo-

rithm, its additional run-time expense, and the reduction it can yield (see next Section).

The proviso of De�nition 6.2 has been chosen to be implemented in the partial-order

package because of its simplicity, its e�ciency (see next Section), and its compatibility

with sleep sets (and with the state-space caching technique considered in Section 8.4).

(The veri�cation of liveness properties is not supported by the current version of the

package.)

A few minor changes to the Promela language have been made in order to make sys-

tems described in Promela compatible with the assumptions under which the algorithms

of this thesis have been developed. For instance, process creation has been forbidden,

and the use of the \atomic" Promela expression has been de�ned more strictly. Promela

has also been extended with two predicates Empty and Full on FIFO channels, for which

optimizations are implemented in the Package (cf. Chapters 3 and 4).

Our partial-order package is available free of charge for educational and research pur-

poses by anonymous ftp from ftp.monte�ore.ulg.ac.be in the /pub/po-package directory.

More information on the partial-order package can be found in the README �le in this

directory.

8.3 Evaluation

The partial-order package has been tested on various realistic examples of protocols

1

. The

aim of these experiments was to determine the type of reduction that can be expected

1

We wish to thank Gerard Holzmann for providing us with several of these examples.

8.3. EVALUATION 113

on real protocol examples when using the algorithms presented in this thesis, and to

evaluate the respective impact of these algorithms on the reduction obtained. In this

Section, results obtained with four sample protocols are detailed.

� PFTP is a �le transfer protocol presented in Chapter 14 of [Hol91], modeled in 206

lines of Promela. It consists of three processes communicating via FIFO channels.

� MULOG3 is a model of a mutual exclusion algorithm presented in [TN87], for 3

participants, modeled in 97 lines of Promela. It consists of six processes communi-

cating via FIFO channels and shared variables.

� ABRA is a model of the Abracadabra protocol presented in [Tur93], modeled in 168

lines of Promela. It consists of four processes communicating via FIFO channels.

� DTP is a data transfer protocol, modeled in 406 lines of PROMELA. It consists of

three processes communicating via FIFO channels.

Experiments were performed using six di�erent algorithms.

� DFS denotes a classical search, as shown in Figure 2.1, performed in a depth-�rst

order.

� SLEEP denotes a selective search using sleep sets alone, as considered in Theo-

rem 5.4 (equivalent to the algorithm of Figure 5.2 when the function Persistent Set

returns the set of all enabled transitions).

� PS denotes a persistent-set selective search, as shown in Figure 4.1.

� PS+SLEEP denotes a selective search using persistent sets and sleep sets, as shown

in Figure 5.2.

� PS+PROV denotes a selective search using persistent sets and the proviso of De�-

nition 6.2.

� PS+SLEEP+PROV denotes a selective search using persistent sets, sleep sets and

the proviso of De�nition 6.2, as shown in Figure 6.2.

All these algorithms can be viewed as particular cases of the general selective-search

algorithm using persistent sets, sleep sets and the proviso, i.e., PS+SLEEP+PROV. They

can be obtained in our partial-order package by turning o� the use of persistent sets, sleep

sets, and/or the proviso. This is done by using appropriate options at compile-time (there

is no run-time overhead due to turning o� some partial-order methods). For instance,

DFS corresponds to a selective-search where all partial-order methods are turned o�.

114 CHAPTER 8. EXPERIMENTS

Note that DFS is, on average, two times slower than the original version of SPIN. This is

due to the fact that parts of the original code of SPIN had to be modi�ed and re-written

in order to connect the partial-order selective-search algorithms to the rest of the tool.

The new code has not been optimized.

Results of these experiments are presented in Table 8.1. All experiments were per-

formed on a SPARC2 workstation with 64 Megabytes of RAM, using the Partial-Order

Package version 3.0. For each run, the numbers of visited states and traversed transitions

are given. Time (in seconds) is user time plus system time as reported by the UNIX-

system time command. All visited states are stored in a hash table. To avoid signi�cant

run-time penalties for disk-access, visited states can only be stored in randomly accessed

memory, i.e., in the main memory available in the computer on which the experiments are

performed. Consequently, parameter settings in all the protocols considered were chosen

to produce global state spaces that can easily be stored in 64 Megabytes of RAM. For

each run, the amount of memory used is directly proportional to the number of stored

states. Indeed, transitions are not stored in memory. Moreover, when using sleep sets,

the amount of memory used for storing sleep sets is insigni�cant with respect to the

overall memory requirements of the selective search, since a handful of bytes su�ces to

represent one sleep set for these examples (there are at most a handful of enabled tran-

sitions in each state), while more than one hundred bytes are used to represent one state

(each state is composed of the current local state of all processes, all current variable

values, and all current message-channel contents).

From the numbers given in Table 8.1, three main observations can be made concerning

the respective impact of persistent sets, sleep sets, and the proviso of De�nition 6.2 on

the reduction obtained.

� Persistent Sets yield the most important reductions on the number of visited states.

They can also yield good reductions on the number of explored transitions.

� Sleep sets yield a less impressive reduction on the number of visited states, but yield

very good reductions on the number of explored transitions.

� Using the proviso of De�nition 6.2 usually does not yield an important increase of

the number of visited states and transitions.

The last observation shows that the proviso of De�nition 6.2 is an e�cient solution for

verifying safety properties using partial-order methods.

As predicted by Theorem 5.4, SLEEP does not yield any reduction on the number of

visited states with respect to DFS. For all protocols, the best reductions can be obtained

with PS+SLEEP, i.e., by using simultaneously persistent sets and sleep sets. Using

8.3. EVALUATION 115

Protocol Algorithm Stored States Transitions Time

PFTP DFS 446,982 1,257,317 478.2

SLEEP 446,982 622,364 639

PS 276,722 482,722 662.7

PS+SLEEP 249,994 351,633 684.7

PS+PROV 279,808 490,228 673.8

PS+SLEEP+PROV 250,514 352,371 690.1

MULOG3 DFS 38,181 111,668 25.3

SLEEP 38,181 38,241 30.5

PS 18,537 38,906 25.8

PS+SLEEP 17,984 18,057 26

PS+PROV 18,537 38,906 26

PS+SLEEP+PROV 17,984 18,057 26.4

ABRA DFS 149,816 372,010 494.2

SLEEP 149,816 176,469 546

PS 32,289 40,931 166.3

PS+SLEEP 27,781 34,381 155.7

PS+PROV 40,472 52,355 204.3

PS+SLEEP+PROV 36,913 46,934 204.4

DTP DFS 251,409 648,467 200.2

SLEEP 251,409 269,912 189

PS 9,904 10,351 11.3

PS+SLEEP 9,904 10,351 11.5

PS+PROV 9,904 10,351 11.4

PS+SLEEP+PROV 9,904 10,351 11.7

Table 8.1: Evaluation

116 CHAPTER 8. EXPERIMENTS

persistent sets and sleep sets gives better reductions than using persistent sets alone in

almost all cases. For DTP, persistent sets are so good in reducing the number of states

and transitions that sleep sets are not able to improve this result (cf. the discussion of

Section 5.3.1).

These results show that using the partial-order methods developed in this thesis is

basically a no-risk improvement. In the worst case, when the reduction is not su�cient

to make up the additional run time overhead (PFTP), the selective search can be slightly

slower than a classical search, but the overall time complexity remains linear in the

number of explored transitions.

Moreover, using partial-order methods can strongly decrease both the time and the

memory resources needed to verify properties of concurrent systems (DTP). Therefore,

they can be used to verify more complex protocols.

8.4 State-Space Caching

Another observation that can be made from the results given in Table 8.1 is the following:

when using partial-order methods, and especially when using sleep sets, the number of

state matchings, i.e., the number of visited transitions minus the number of visited states,

strongly decreases. This phenomenon was already pointed out in Section 5.3.2, and can

be explained as follows.

When performing a classical search (like DFS), almost all states in the state space of

a concurrent system are typically visited several times. There are two causes for this:

1. From the initial state, the explorations of all interleavings of a single �nite concur-

rent execution of the system always lead to the same state. This state will thus be

visited several times because of all these interleavings.

2. From the initial state, explorations of di�erent �nite concurrent executions may

lead to the same state.

When using partial-order methods, and especially when using sleep sets, most of the

e�ects of the �rst cause given above can be avoided, and, in many cases, most of the

states are visited only once during the selective search.

States that are visited only once do not need to be stored in memory. Indeed, the

only reason why visited states are stored in memory is to avoid redundant explorations

of parts of the state space: when a state that has already been visited is visited again

later during the search, it is not necessary to revisit all its successors. Unfortunately, it is

impossible to determine which states are visited only once before the search is completed.

8.4. STATE-SPACE CACHING 117

However, if most of the states are visited only once, the probability that a state will be

visited again later during the search is very small, and the risk of double work when not

storing an already visited state becomes very small as well. This enables one not to store

most of the states that have already been visited without incurring too much redundant

explorations of parts of the state space. The memory requirements can thus strongly

decrease without seriously increasing the time requirements.

State-space caching [Hol85, JJ91] is a memory management technique for storing the

states encountered during a depth-�rst search that consists in storing all the states of the

current explored path (i.e., those in the current depth-�rst search \stack") plus as many

other states as possible given the remaining amount of available memory. It thus creates

a restricted cache of selected system states that have already been visited. Initially, all

states encountered are stored into the cache. When the cache �lls up, old states that are

not in the stack are removed from the cache to accommodate new ones. This method

never tries to store more states than possible in the cache. Thus, if the size of the cache

is greater than the maximal size of the stack during the exploration, the search is not

truncated, and eventually terminates.

We have implemented such a caching discipline in the partial-order package. The

caching discipline can be used with any of the selective-search algorithms that were

considered in the previous Section. Results of experiments with di�erent cache sizes and

the algorithms DFS, PS, and PS+SLEEP for the MULOG3 protocol are presented in

Figure 8.3. For each run, the run time is directly proportional to the number of explored

transitions.

With DFS, these results clearly show that the size of the cache, i.e., the number of

stored states, can be reduced to approximately the third of the total number of states in

A

G

without seriously a�ecting the number of explored transitions and hence the run time.

If the cache is further reduced, the run time increases dramatically, due to redundant

explorations of large parts of the state space. This run-time explosion makes state-space

caching ine�cient under a certain threshold.

With PS, this threshold can be reduced to approximately the eighth of the total

number of states. This improvement is not very spectacular because the number of

matched states, even when using PS, is still too important (see Table 8.1). The risk

of double work when reaching an already visited state that has been removed from the

cache is not reduced enough.

With PS+SLEEP, the situation is di�erent: there is no run-time explosion anymore.

Indeed, the number of matched states is reduced so much (see Table 8.1) that the risk

of double work becomes very small. When the cache size is reduced up to the maximal

depth of the search (this maximal depth is the lower bound for the cache size since all

118 CHAPTER 8. EXPERIMENTS

0

200000

400000

600000

800000

1e+06

1.2e+06

0 5000 10000 15000 20000 25000 30000 35000 40000

Stored states

DFS

PS

PS + SLEEP

Transitions

Figure 8.3: Performances of state-space caching for MULOG3

states of the stack are stored to ensure the termination of the search), the increase of

the number of explored transitions is still less than 10% with respect to the number of

transitions explored by PS+SLEEP when all visited states are stored in memory, i.e.,

without using state-space caching.

In other words, the MULOG3 protocol, which has 38,181 reachable states that can be

visited by DFS in 25 seconds (see Table 8.1), can be analyzed with the same run time by

using PS+SLEEP and state-space caching while storing no more than 150 states. The

memory requirements are reduced by a factor of 200 while the run time remains the same.

Of course, the practical interest of this result is that using partial-order methods and

state-space caching together makes possible the complete exploration of very large state

spaces, that could not be explored so far.

For instance, consider two other versions of the MULOG protocol, denoted MULOG4

and MULOG5, with respectively four and �ve participants. Let PS+SLEEP+Caching

denote a selective search using persistent sets, sleep sets, and state-space caching. Ta-

bles 8.2 and 8.3 present results of experiments performed on MULOG4 and MULOG5

with the algorithms DFS, PS+SLEEP, and PS+SLEEP+Caching. \Stored states" is the

number of stored states at the end of the search. When state-space caching is used, the

8.4. STATE-SPACE CACHING 119

Algorithm Stored St. Cleared St. Matched St. Transitions Time

DFS { { { { {

PS+SLEEP 654,600 0 6,189 660,789 986.4

(2516.7)

PS+SLEEP+Caching 300,000 354,676 6,198 660,874 1122.6

(1184.4)

Table 8.2: Veri�cation of MULOG4

Algorithm Stored St. Cleared St. Matched St. Transitions Time

DFS { { { { {

PS+SLEEP { { { { {

PS+SLEEP+Caching 300,000 28,613,162 349,904 29,263,066 60,633.1

Table 8.3: Veri�cation of MULOG5

maximum number of stored states, i.e., the size of the cache, is limited to 300,000 states.

(This number is approximately the maximum number of states that can be stored in

RAM for MULOG4 and MULOG5 while still avoiding any paging.) \Cleared states"

is the number of times a state was removed from the cache. \Matched states" is the

number of state matchings that occurred during the search.

For MULOG4, DFS was not able to complete its search, since its global state space is

too large to be stored in (64 Megabytes of) memory. Using state-space caching with DFS

does not help, because of the run time explosion mentioned above. MULOG4 can still

be veri�ed using PS+SLEEP, even without state-space caching. Real time as reported

by the UNIX-system time command is given between parentheses below the run time

(user time plus system time). The important di�erence between these two numbers for

PS+SLEEP is due to paging (storing 654,600 states of MULOG4 requires more than 64

Megabytes of RAM, so some of them had to be stored on disk).

For MULOG5, the only algorithm that is able to completely verify the correctness of

this protocol is PS+SLEEP+Caching. The complete selective search takes approximately

17 hours, and explores 29,263,066 transitions. This means that the reduced state space

A

R

explored by PS+SLEEP contains at most 29,263,066 states. The size of the global

state space A

G

of MULOG5 is not known, but is very likely several orders of magnitude

larger than the largest state spaces that can be explored by other existing veri�cation

tools.

120 CHAPTER 8. EXPERIMENTS

Note that the e�ciency of the state-space caching technique can be dynamically esti-

mated during the search: if the maximum stack size remains acceptable with respect to

the cache size and if the proportion of matched states remains small enough, the run-time

explosion will likely be avoided. Else one cannot predict if the cache size is large enough

to avoid the run-time explosion.

8.5 Conclusion

Using partial-order methods is basically a no-risk improvement with respect to a classical

exhaustive search in the state space of the system being analyzed. Moreover, partial-

order methods can yield substantial improvements in the performances of the veri�cation.

Therefore, these methods broaden the applicability of state-space exploration techniques

to more complex systems.

The reduction obtained depends on the coupling between the processes in the system.

When the coupling is very tight, partial-order methods yield no reduction, and the se-

lective search becomes equivalent to a classical exhaustive search. When the coupling

between the processes is very loose, the reduction can be very impressive. For most

realistic examples, partial-order methods provide a signi�cant reduction of the memory

and time requirements needed to verify protocols.

It is worth noticing that partial-order methods can already yield good performance

improvements for verifying systems containing only a handful of processes. It is not

necessary to consider systems composed of tens of processes to obtain spectacular reduc-

tions. To put it in another way, the part of the state explosion due to the exploration

of all possible interleavings of independent transitions can already be very important for

systems containing only a few processes, and partial-order methods are able to get rid of

most of this explosion.

This very important point emphasizes the practical signi�cance of partial-order meth-

ods. Indeed, most of the protocol models that are analyzed with state-space exploration

techniques typically contain only a handful of processes. The examples we have con-

sidered in Section 8.3 reect this reality. For instance, a typical protocol example, as

illustrated in Figure 8.4, is usually composed of a few processes that communicate asyn-

chronously by exchanging messages through some communication medium, each process

being described by a long piece of sequential code, with complex interactions between

control and data.

Not only these systems are very frequent, but they are also very hard to verify: they

are complex (several hundreds lines of (Promela) code are needed to model these sys-

tems), and their state spaces are highly irregular. Speci�cally, their state spaces seem

8.5. CONCLUSION 121

Figure 8.4: Typical protocol example

to be much more irregular than, for instance, those of systems composed of many iden-

tical processes (or pieces of hardware), for which symbolic veri�cation techniques are

able to capture the regularity of the state space with the guidance of the user (see,

e.g., [BCM

+

90]). In contrast, for examples of the type we are considering here, existing

symbolic veri�cation techniques turned out to be inferior to classical state-space explo-

ration algorithms [HD93]. Consequently, for this particular, though important, class of

systems, partial-order methods are one of the most successful approaches to tackle the

state explosion arising during the analysis of such systems.

For other types of systems, it is not known how competitive partial-order methods are.

For instance, it is claimed in [McM92] that partial-order methods like those presented in

this thesis would not give good reductions for asynchronous circuit models, \because of

the ubiquity of confusion in such models." This argument is not su�cient to justify such

a claim. Indeed, it should be proved, for instance, that for all systems in a speci�c class

of concurrent systems (left to be de�ned), for all states s in the global state spaces of

these systems, the only persistent set in s is the set of all transitions enabled in s. Then,

indeed, by Theorem 5.4, the algorithms considered in this thesis will visit all reachable

states of such systems (though not necessarily all transitions in their state spaces), and

yield no reduction in the number of visited states. However, without such a proof (a

precise characterization of such a class of systems is not given in [McM92]), and without

any experimental result validating this claim, the problem is still open.

Finally, we have shown in this Chapter that using partial-order methods, and espe-

cially using sleep sets, can substantially improve the state-space caching discipline by

getting rid of the main cause of its previous ine�ciency, namely prohibitive state match-

ing due to the exploration of all possible interleavings of concurrent executions all leading

122 CHAPTER 8. EXPERIMENTS

to the same state. Thanks to sleep sets, the memory requirements needed to verify large

reduced state spaces can be strongly decreased (several orders of magnitude) without se-

riously a�ecting the time requirements. This makes possible the complete exploration of

very large reduced state spaces (several tens of million states) in a reasonable time (one

night). Used together, partial-order methods and state-space caching signi�cantly push

back the limits of veri�cation by state-space exploration.

Chapter 9

Conclusions

9.1 Summary

We have built, from the ground up, an original approach to cope with the state-explosion

problem that arises during the veri�cation of concurrent systems by classical state-space

exploration techniques. Speci�cally, our approach tackles one cause of the state-explosion

problem: the modeling of concurrency by interleaving. Indeed, all interleavings of all

concurrent transitions of a system are represented in its state space. We showed that

exploring all these interleavings is not necessary for veri�cation.

The focus of the thesis has been on developing practical and e�cient selective-search

algorithms for exploring only a reduced part of the state space of a concurrent system that

is su�cient for checking given properties of this system. The algorithms we have presented

rely on the concept of independency and the properties it implies. They take advantage

of the independency between transitions to avoid exploring all their interleavings. The

interleavings of a partial-order execution were related by the notion of Mazurkiewicz's

trace. Traces proved to be a powerful and elegant vehicle to carry out the correctness

proofs of our algorithms. Several ways to detect independency in concurrent systems

were discussed and illustrated using a general model for representing concurrent systems.

Two compatible techniques for determining the transitions that need to be explored in

a selective search were developed: persistent sets and sleep sets. Persistent sets were in-

troduced to provide an abstract characterization of a whole family of existing algorithms.

All these algorithms were shown to compute persistent sets, and were precisely compared

with each other. Then it was shown how all the previous algorithms can be improved by

using a new relation that models interactions between transitions more �nely than the

existing relations. The notion of conditional stubborn set was introduced, and all the

considered algorithms were shown to be approximations of conditional stubborn sets.

123

124 CHAPTER 9. CONCLUSIONS

The second main algorithmic technique developed in this thesis is the sleep set tech-

nique. We have described how to combine sleep sets with persistent sets, and have studied

the properties of sleep sets. Results of experiments with real protocol examples show that

not only persistent sets and sleep sets are compatible, but they are also complementary.

A simple modi�cation of a selective-search algorithm that can be used for checking

the reachability of local states, and, more generally, for checking any safety property, was

presented. The modi�cation consists in enforcing a simple additional proviso that ensures

that the choices between enabled independent transitions made during the selective search

are not completely unfair with respect to some processes. The notion of trace automaton

was shown to characterize the joint e�ect of using persistent sets and sleep sets for the

veri�cation of safety properties.

The veri�cation of liveness properties and, more generally, the model-checking prob-

lem for linear-time temporal-logic were then addressed. Techniques for solving these

problems were discussed and compared. It was also shown how the proposed techniques

complement each other.

The algorithms developed in the thesis have been implemented in an add-on package

for the protocol veri�cation system SPIN. This partial-order package has been tested

on a large set of protocol examples, including the four sample examples detailed in the

previous Chapter. Results of experiments show that using the partial-order methods we

have developed is basically a no-risk improvement with respect to a classical exhaustive

search in the state space of the system being analyzed. Moreover, partial-order methods

can yield substantial improvements in the performances of the veri�cation. The improve-

ment obtained depends on the coupling between the processes in the system. When the

coupling is very tight, partial-order methods yield no reduction, and the selective search

becomes equivalent to a classical exhaustive search. When the coupling between the pro-

cesses is very loose, the reduction in the number of explored states and transitions can be

very impressive. For most realistic examples, partial-order methods provide a signi�cant

reduction of the memory and time requirements needed to verify protocols.

Finally, we have shown that using partial-order methods, and especially using sleep

sets, can substantially improve the state-space caching discipline by getting rid of the

main cause of its previous ine�ciency, namely prohibitive state matching due to the

exploration of all possible interleavings of concurrent executions all leading to the same

state. Used together, partial-order methods and state-space caching signi�cantly broaden

the applicability of veri�cation by state-space exploration.

9.2. FUTURE WORK 125

9.2 Future Work

This section indicates some directions for future research.

Tackling other causes of state explosion

In real protocols, the modeling of concurrency by interleaving is only but one cause of

the state explosion that creeps in during veri�cation by state-space exploration. Devel-

oping techniques to tackle the other causes of state explosion (e.g., variables whose values

range over a large domain, communication channels that contain many di�erent types of

messages, etc.), and combining them with partial-order methods is certainly worthwhile.

Simultaneously attacking the di�erent causes of state-explosion should substantially im-

prove the e�ciency and the applicability of automatic veri�cation tools.

Verifying other properties

So far, partial-order methods have been developed for deadlock detection, for the veri�ca-

tion of safety properties, and for linear-time temporal-logic model checking. These three

types of properties cover most of the properties of concurrent reactive systems one would

ever wish to verify in practice. It is nevertheless interesting to study how partial-order

methods can be adapted for checking other types of properties, like properties expressed

in branching-time temporal logic or in partial-order temporal logic. A �rst step in this

direction is presented in [GKPP94].

Another area for further research is the veri�cation of \real-time" systems, i.e., systems

whose descriptions involve a quantitative notion of time. Investigations in this direction

have started recently with [YSSC93] where a veri�cation technique for real-time systems

using partial-order methods is presented.

Other applications

State explosion is a long-standing problem, which is central to many applications in com-

puter science. Any method that can tackle this problem in a neat way is of great promise,

not only for veri�cation but also for several other applications. We believe partial-order

methods may be useful for solving other problems than veri�cation. Actually, any prob-

lem that can be reduced to a state-space exploration problem and where some form of

independency (commutativity) can be identi�ed is a potential target for partial-order

methods. An example of such an application is planning [GK91]. Several other research

topics of this nature are also possible.

126 CHAPTER 9. CONCLUSIONS

Bibliography

[ACW90] S. Aggarwal, C. Courcoubetis, and P. Wolper. Adding liveness properties to

coupled �nite-state machines. ACM Transactions on Programming Languages

and Systems, 12(2):303{339, 1990.

[AFdR80] K. R. Apt, N. Francez, and W. P. de Roever. A proof system for communi-

cating sequential processes. ACM Transactions on Programming Languages

and Systems, 2:359{385, 1980.

[AHU74] Alfred V. Aho, John E. Hopcroft, and Je�rey D. Ullman. The Design and

Analysis of Computer Algorithms. Addison-Wesley, 1974.

[AS87] B. Alpern and F. B. Schneider. Recognizing safety and liveness. Distributed

Computing, 2:117{126, 1987.

[BCM

+

90] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic

model checking: 10

20

states and beyond. In Proceedings of the 5th Symposium

on Logic in Computer Science, pages 428{439, Philadelphia, June 1990.

[B�uc62] J.R. B�uchi. On a decision method in restricted second order arithmetic.

In Proc. Internat. Congr. Logic, Method and Philos. Sci. 1960, pages 1{12,

Stanford, 1962. Stanford University Press.

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic veri�cation of �nite-

state concurrent systems using temporal logic speci�cations. ACM Transac-

tions on Programming Languages and Systems, 8(2):244{263, January 1986.

[CM88] K. M. Chandy and J. Misra. Parallel Program Design: A Foundation.

Addison-Wesley, 1988.

[DDHY92] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Protocol veri�cation as

a hardware design aid. In 1992 IEEE International Conference on Computer

Design: VLSI in Computers and Processors, pages 522{525, Cambridge, MA,

October 1992. IEEE Computer Society.

127

128 BIBLIOGRAPHY

[Dij76] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[EF82] T. Elrad and N. Francez. Decomposition of distributed programs into commu-

nication closed layers. Science of Computer Programming, 2:155{173, 1982.

[Esp92] J. Esparza. Model checking using net unfoldings. Hildesheimer Informatik-

berichte 14/92, Univeristy of Hildesheim, 1992.

[FGM

+

92] J.C. Fernandez, H. Garavel, L. Mounier, A. Rasse, C. Rodriguez, and

J. Sifakis. A toolbox for the veri�cation of lotos programs. In Proc. of the

14th International Conference on Software Engineering ICSE'14, Melbourne,

Australia, May 1992. ACM.

[Fra86] N. Francez. Fairness. Springer-Verlag, 1986.

[GH85] M. G. Gouda and J. Y. Han. Protocol validation by fair progress state explo-

ration. Computer Networks and ISDN systems, pages 353{361, May 1985.

[GH93] P. Godefroid and G. J. Holzmann. On the veri�cation of temporal properties.

In Proc. 13th IFIP WG 6.1 International Symposium on Protocol Speci�-

cation, Testing, and Veri�cation, pages 109{124, Li�ege, May 1993. North-

Holland.

[GHP92] P. Godefroid, G. J. Holzmann, and D. Pirottin. State space caching revisited.

In Proc. 4th Workshop on Computer Aided Veri�cation, volume 663 of Lecture

Notes in Computer Science, pages 178{191, Montreal, June 1992. Springer-

Verlag.

[GK91] P. Godefroid and F. Kabanza. An e�cient reactive planner for synthesiz-

ing reactive plans. In Proceedings of AAAI-91, volume 2, pages 640{645,

Anaheim, July 1991.

[GKPP94] R. Gerth, R. Kuiper, D. Peled, and W. Penczek. A partial order approach to

branching time model checking. To appear in the Proceedings of the Third

Israel Symposium on Theory of Computing and Systems, 1994.

[God90] P. Godefroid. Using partial orders to improve automatic veri�cation meth-

ods. In Proc. 2nd Workshop on Computer Aided Veri�cation, volume 531

of Lecture Notes in Computer Science, pages 176{185, Rutgers, June 1990.

Springer-Verlag. Extended version in ACM/AMS DIMACS Series, volume 3,

pages 321{340, 1991.

BIBLIOGRAPHY 129

[GP93] P. Godefroid and D. Pirottin. Re�ning dependencies improves partial-order

veri�cation methods. In Proc. 5th Conference on Computer Aided Veri�-

cation, volume 697 of Lecture Notes in Computer Science, pages 438{449,

Elounda, June 1993. Springer-Verlag.

[Gri90] E. P. Gribomont. A programming logic for formal concurrent systems. In

Proc. CONCUR'90, volume 458 of Lecture Notes in Computer Science, pages

298{313. Springer-Verlag, 1990.

[Gri93] E. P. Gribomont. Concurrency without toil: a systematic method for parallel

program design. Science of Computer Programming, 21:1{56, 1993.

[GW91a] P. Godefroid and P. Wolper. A partial approach to model checking. In

Proceedings of the 6th IEEE Symposium on Logic in Computer Science, pages

406{415, Amsterdam, July 1991.

[GW91b] P. Godefroid and P.Wolper. Using partial orders for the e�cient veri�cation of

deadlock freedom and safety properties. In Proc. 3rd Workshop on Computer

Aided Veri�cation, volume 575 of Lecture Notes in Computer Science, pages

332{342, Aalborg, July 1991.

[GW93] P. Godefroid and P. Wolper. Using partial orders for the e�cient veri�cation

of deadlock freedom and safety properties. Formal Methods in System Design,

2(2):149{164, April 1993.

[GW94] P. Godefroid and P. Wolper. A partial approach to model checking. Infor-

mation and Computation, 110(2):305{326, May 1994.

[HD93] A. J. Hu and D. L. Dill. E�cient veri�cation with bdds using implicitly

conjoined invariants. In Proc. 5th Conference on Computer Aided Veri�cation,

volume 697 of Lecture Notes in Computer Science, pages 3{14, Elounda, June

1993. Springer-Verlag.

[HGP92] G. J. Holzmann, P. Godefroid, and D. Pirottin. Coverage preserving reduction

strategies for reachability analysis. In Proc. 12th IFIP WG 6.1 International

Symposium on Protocol Speci�cation, Testing, and Veri�cation, pages 349{

363, Lake Buena Vista, Florida, June 1992. North-Holland.

[HK90] Z. Har'El and R. P. Kurshan. Software for analytical development of com-

munication protocols. AT&T Technical Journal, 1990.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

130 BIBLIOGRAPHY

[Hol85] G. J. Holzmann. Tracing protocols. AT&T Technical Journal, 64(12):2413{

2434, 1985.

[Hol87] G. J. Holzmann. Automated protocol validation in argos | assertion proving

and scatter searching. IEEE Trans. on Software Engineering, 13(6):683{696,

1987.

[Hol91] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall,

1991.

[JJ91] C. Jard and Th. Jeron. Bounded-memory algorithms for veri�cation on-the-

y. In Proc. 3rd Workshop on Computer Aided Veri�cation, volume 575 of

Lecture Notes in Computer Science, Aalborg, July 1991. Springer-Verlag.

[JK90] R. Janicki and M. Koutny. On some implementation of optimal simulations.

In Proc. 2nd Workshop on Computer Aided Veri�cation, volume 531 of Lec-

ture Notes in Computer Science, pages 166{175, Rutgers, June 1990. Springer-

Verlag.

[JZ93] W. Janssen and J. Zwiers. Specifying and proving communication closedness

in protocols. In Proc. 13th IFIP WG 6.1 International Symposium on Proto-

col Speci�cation, Testing, and Veri�cation, pages 323{339, Li�ege, May 1993.

North-Holland.

[KM89] R. P. Kurshan and K. McMillan. A structural induction theorem for processes.

In Proceedings of the Eigth ACM Symposium on Principles of Distributed

Computing, pages 239{248, Edmonton, Alberta, August 1989.

[KP86] Y. Kornatzky and S. S. Pinter. A model checker for partial order temporal

logic. EE PUB 597, Department of Electrical Enginering, Technion-Israel

Institute of Technology, 1986.

[KP87] S. Katz and D. Peled. Interleaving set temporal logic. In Proc. 6th ACM

Symp. on Principles of Distributed Computing, pages 178{190, Vancouver,

August 1987.

[KP92a] S. Katz and D. Peled. De�ning conditional independence using collapses.

Theoretical Computer Science, 101:337{359, 1992.

[KP92b] S. Katz and D. Peled. Veri�cation of distributed programs using representa-

tive interleaving sequences. Distributed Computing, 6:107{120, 1992.

[Lam77] L. Lamport. Proving the correctness of multiprocess programs. IEEE Trans-

actions on Software Engineering, SE-3(2):125{143, 1977.

BIBLIOGRAPHY 131

[Lam78] L. Lamport. Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM, 21(7):558{564, 1978.

[Lam83] L. Lamport. What good is temporal logic? Information Processing'83, pages

657{668, 1983.

[Liu89] M.T. Liu. Protocol engineering. Advances in Computing, 29:79{195, 1989.

[LP81] H. R. Lewis and C. H. Papadimitriou. Elements of the Theory of Computation.

Prentice Hall, 1981.

[LP85] O. Lichtenstein and A. Pnueli. Checking that �nite state concurrent programs

satisfy their linear speci�cation. In Proceedings of the Twelfth ACM Sympo-

sium on Principles of Programming Languages, pages 97{107, New Orleans,

January 1985.

[Maz86] A. Mazurkiewicz. Trace theory. In Petri Nets: Applications and Relationships

to Other Models of Concurrency, Advances in Petri Nets 1986, Part II; Pro-

ceedings of an Advanced Course, volume 255 of Lecture Notes in Computer

Science, pages 279{324. Springer-Verlag, 1986.

[McM92] K. McMillan. Using unfolding to avoid the state explosion problem in the

veri�cation of asynchronous circuits. In Proc. 4th Workshop on Computer

Aided Veri�cation, volume 663 of Lecture Notes in Computer Science, pages

164{177, Montreal, June 1992. Springer-Verlag.

[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent

Systems: Speci�cation. Springer-Verlag, 1992.

[Ove81] W. T. Overman. Veri�cation of Concurrent Systems: Function and Timing.

PhD thesis, University of California Los Angeles, 1981.

[Pel93] D. Peled. All from one, one for all: on model checking using representatives. In

Proc. 5th Conference on Computer Aided Veri�cation, volume 697 of Lecture

Notes in Computer Science, pages 409{423, Elounda, June 1993. Springer-

Verlag.

[Pel94] D. Peled. Combining partial order reductions with on-the-y model-checking.

In Proc. 6th Conference on Computer Aided Veri�cation, volume 818 of

Lecture Notes in Computer Science, pages 377{390, Stanford, June 1994.

Springer-Verlag.

[Pen88] W. Penczek. A temporal logic for event structures. Fundamenta Informaticae,

11(3):297{326, 1988.

132 BIBLIOGRAPHY

[Pen90] W. Penczek. Proving partial order properties using cctl. Proc. Concurrency

and Compositionality Workshop, San Miniato, Italy, 1990.

[Pet81] J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall,

1981.

[PL90] D. K. Probst and H. F. Li. Using partial-order semantics to avoid the state

explosion problem in asynchronous systems. In Proc. 2nd Workshop on Com-

puter Aided Veri�cation, volume 531 of Lecture Notes in Computer Science,

pages 146{155, Rutgers, June 1990. Springer-Verlag.

[Pnu85] A. Pnueli. Applications of temporal logic to the speci�cation and veri�cation

of reactive systems: A survey of current trends. In Proc. Advanced School on

Current Trends in Concurrency, volume 224 of Lecture Notes in Computer

Science, pages 510{584, Berlin, 1985. Springer-Verlag.

[Pra86] V. Pratt. Modelling concurrency with partial orders. International Journal

of Parallel Programming, 15(1):33{71, 1986.

[PW84] S. S. Pinter and P. Wolper. A temporal logic for reasoning about partially

ordered computations. In Proc. 3rd ACM Symposium on Principles of Dis-

tributed Computing, pages 28{37, Vancouver, 1984.

[QS81] J.P. Quielle and J. Sifakis. Speci�cation and veri�cation of concurrent systems

in cesar. In Proc. 5th Int'l Symp. on Programming, volume 137 of Lecture

Notes in Computer Science, pages 337{351. Springer-Verlag, 1981.

[Rei85] W. Reisig. Petri Nets: an Introduction. EATCS Monographs on Theoretical

Computer Science, Springer-Verlag, 1985.

[Rud87] H. Rudin. Network protocols and tools to help produce them. Annual Review

of Computer Science, 2:291{316, 1987.

[Rud92] H. Rudin. Protocol development success stories: Part I. In Proc. 12th IFIP

WG 6.1 International Symposium on Protocol Speci�cation, Testing, and Ver-

i�cation, Lake Buena Vista, Florida, June 1992. North-Holland.

[SdR89] F. A. Stomp and W. P. de Roever. Designing distributed algorithms by means

of formal sequentially phased reasoning. In Proc. 3rd International Workshop

on Distributed Algorithms, volume 392 of Lecture Notes in Computer Science,

pages 242{253, Nice, 1989. Springer-Verlag.

[Sif82] J. Sifakis. A uni�ed approach for studying the properties of transition system.

Theoretical Computer Science, 18:227{258, 1982.

BIBLIOGRAPHY 133

[Tar72] R. E. Tarjan. Depth-�rst search and linear graph algorithms. SIAM J. Com-

puting, 1(2):146{160, 1972.

[Tha89] Andr�e Thayse and et al. From Modal Logic to Deductive Databases: Intro-

ducing a Logic Based Approach to Arti�cial Intelligence. Wiley, 1989.

[TN87] M. Trehel and M. Naimi. Un algorithme distribu�e d'exclusion mutuelle en

log(n). Technique et Science Informatiques, pages 141{150, 1987.

[Tur93] K. J. Turner et al. Using Formal Description Techniques { An Introduction

to Estelle, Lotos and SDL. Wiley, 1993.

[Val88a] A. Valmari. Error detection by reduced reachability graph generation. In

Proc. 9th International Conference on Application and Theory of Petri Nets,

pages 95{112, Venice, 1988.

[Val88b] A. Valmari. Heuristics for lazy state generation speeds up analysis of con-

current systems. In Proc. of the Finnish Arti�cial Intelligence Symposium

STeP-88, volume 2, pages 640{650, Helsinki, 1988.

[Val90] A. Valmari. A stubborn attack on state explosion. In Proc. 2nd Workshop

on Computer Aided Veri�cation, volume 531 of Lecture Notes in Computer

Science, pages 156{165, Rutgers, June 1990. Springer-Verlag.

[Val91] A. Valmari. Stubborn sets for reduced state space generation. In Advances

in Petri Nets 1990, volume 483 of Lecture Notes in Computer Science, pages

491{515. Springer-Verlag, 1991.

[Val93] A. Valmari. On-the-y veri�cation with stubborn sets. In Proc. 5th Confer-

ence on Computer Aided Veri�cation, volume 697 of Lecture Notes in Com-

puter Science, pages 397{408, Elounda, June 1993. Springer-Verlag.

[VW86] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic

program veri�cation. In Proceedings of the First Symposium on Logic in

Computer Science, pages 322{331, Cambridge, June 1986.

[Wes86] C. H. West. Protocol validation by random state exploration. In Proc. 6th

IFIP WG 6.1 International Symposium on Protocol Speci�cation, Testing,

and Veri�cation, pages 233{242. North-Holland, 1986.

[WG93] P. Wolper and P. Godefroid. Partial-order methods for temporal veri�ca-

tion (invited paper). In Proc. CONCUR'93, volume 715 of Lecture Notes in

Computer Science, pages 233{246, Hildesheim, August 1993. Springer-Verlag.

134 BIBLIOGRAPHY

[Win86] G. Winskel. Event structures. In Petri Nets: Applications and Relationships

to Other Models of Concurrency, Advances in Petri Nets 1986, Part II; Pro-

ceedings of an Advanced Course, volume 255 of Lecture Notes in Computer

Science, pages 325{392. Springer-Verlag, 1986.

[WL89] P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes

with network invariants. In Automatic Veri�cation Methods for Finite State

Systems, Proc. Int. Workshop, Grenoble, volume 407 of Lecture Notes in

Computer Science, pages 68{80, Grenoble, June 1989. Springer-Verlag.

[Wol89] P. Wolper. On the relation of programs and computations to models of tem-

poral logic. In B. Banieqbal, H. Barringer, and A. Pnueli, editors, Proc.

Temporal Logic in Speci�cation, volume 398 of Lecture Notes in Computer

Science, pages 75{123. Springer-Verlag, 1989.

[WVS83] P. Wolper, M.Y. Vardi, and A.P. Sistla. Reasoning about in�nite computation

paths. In Proc. 24th IEEE Symposium on Foundations of Computer Science,

pages 185{194, Tucson, 1983.

[YSSC93] T. Yoneda, A. Shibayama, B.-H. Schlinglo�, and E. Clarke. E�cient veri�-

cation of parallel real-time systems. In Proc. 5th Conference on Computer

Aided Veri�cation, volume 697 of Lecture Notes in Computer Science, pages

321{332, Elounda, June 1993. Springer-Verlag.

