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ABSTRACT

Software model checking as well as runtime verification are veri-
fication techniques which are widely used for checking temporal
properties of software systems. Even though they are property
verification techniques, their common usage in practice is in "bug
finding", that is, finding violations of temporal properties. Moti-
vated by this observation and leveraging the recent progress in
fuzzing, we build a greybox fuzzing framework to find violations
of Linear-time Temporal Logic (LTL) properties.

Our framework takes as input a sequential program written in
C/C++, and an LTL property. It finds violations, or counterexample
traces, of the LTL property in stateful software systems; however,
it does not achieve verification. Our work substantially extends
directed greybox fuzzing to witness arbitrarily complex event or-
derings. We note that existing directed greybox fuzzing approaches
are limited to witnessing reaching a location or witnessing simple
event orderings like use-after-free. At the same time, compared
to model checkers, our approach finds the counterexamples faster,
thereby finding more counterexamples within a given time budget.

Our LTL-Fuzzer tool, built on top of the AFL fuzzer, is shown
to be effective in detecting bugs in well-known protocol imple-
mentations, such as OpenSSL and Telnet. We use LTL-Fuzzer to
reproduce known vulnerabilities (CVEs), to find 15 zero-day bugs
by checking properties extracted from RFCs (for which 12 CVEs
have been assigned), and to find violations of both safety as well
as liveness properties in real-world protocol implementations. Our
work represents a practical advance over software model checkers
— while simultaneously representing a conceptual advance over
existing greybox fuzzers. Our work thus provides a starting point
for understanding the unexplored synergies among software model
checking, runtime verification and greybox fuzzing.
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1 INTRODUCTION

Software model checking is a popular validation and verification
method for reactive stateful software systems. It is an automated
technique to check temporal logic properties (constraining event
orderings in program execution) against a finite state transition sys-
tem. Model checking usually suffers from the state space explosion
problem; this is exacerbated in software systems which are natu-
rally infinite-state. To cope with infinitely many states, the research
community has looked into automatically deriving a hierarchy of
finite state abstractions via predicate abstractions and abstraction
refinement of the program’s data memory (e.g. see [13]). Whenever
a counterexample trace is found in such model checking runs, the
trace can be analyzed to find (a) whether it is a spurious counterex-
ample introduced due to abstractions, or (b) the root-cause / bug
causing the counterexample. This has rendered model checking to
be a useful automated bug finding method for software systems.

Runtime verification is a lightweight and yet rigorous verifica-
tion method, which complements model checking [15, 47, 48]. In
runtime verification, a single execution of a system is dynamically
checked against formally specified properties (e.g, temporal logic
properties). Specifically, formal properties specify the correct be-
haviours of a system. Then the system is instrumented to capture
events that are related to the properties being checked. During
runtime, a monitor collects the events to generate execution traces
and checks whether the traces conform to the specified properties.
When the properties are violated, it reports violations. Runtime
verification aims to achieve a lightweight but not full-fledged verifi-
cation method. It verifies software systems at runtime without the
need of constructing models about software systems and execution
environments. However, to generate effective execution traces, soft-
ware systems are required to be fed many inputs. These inputs are
usually obtained manually or via random generation [47]; there-
fore, runtime verification may take much manual effort and explore
many useless inputs in the process of exposing property violations.

Parallel to the works in software model checking and runtime
verification, greybox fuzzing methods [1, 3] have seen substantial
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recent advances. These methods conduct a biased random search
over the domain of program inputs, to find bugs or vulnerabilities.
The main advantage of greybox fuzzing lies in its scalability to large
software systems. However, greybox fuzzing is only a testing (not
verification) method and it is mostly useful for finding witnesses to
simple oracles such as crashes or overflows. Recently there have
been some extension of greybox fuzzing methods towards gener-
ating witnesses of more complex oracles, such as tests reaching a
location [17]. However, generating inputs and traces satisfying a
complex temporal property remains beyond the reach of current
greybox fuzzing tools. Thus, today’s greybox fuzzing technology
cannot replace the bug-finding abilities of software model checking
and runtime verification.

In this paper, we take a step forward in understanding the syn-
ergies among software model checking, runtime verification and
greybox fuzzing. Given a sequential program and a Linear-time
Temporal Logic (LTL) property 𝜙 , we construct the Büchi automata
A¬𝜙 accepting ¬𝜙 , and use this automata to guide the fuzz cam-
paign. Thus, given a random input exercising an execution trace 𝜋 ,
we can check the "progress" of 𝜋 in reaching the accepting states
of A¬𝜙 , and derive from A¬𝜙 , the events that are needed to make
further progress in the automata. Furthermore, in general, traces ac-
cepted byA¬𝜙 are infinite in length and visit an accepting state in-
finitely often. To accomplish the generation of such infinite-length
traces in the course of a fuzz campaign, we can take application
state snapshots (at selected program locations) and detect whether
an accepting state of A¬𝜙 is being visited with the same program
state. The application state snapshot can also involve a state ab-
straction if needed, in which case the counterexample trace can be
subsequently validated via concrete execution.

We present a fuzzing-based technique that directs fuzzing to find
violations of arbitrary LTL properties. To the best of our knowledge,
no existing fuzzing technique is capable of finding violations of
complex constraints on event orderings such as LTL properties.
Existing works on greybox fuzzing are limited to finding witnesses
of simple properties such as crashes or use-after-free. This is the
main contribution of our work: algorithms and an implementation
of our ideas in a tool that is able to validate any LTL property,
thereby covering a much more expressive class of properties than
crashes or use-after-free. Our work adapts directed greybox fuzzing
(which directs the search towards specific program locations) to
find violations of temporal logic formulae. We realize our approach
for detecting violations of LTL properties in a new greybox fuzzer
tool called LTL-Fuzzer. LTL-Fuzzer is built on top of the AFL
fuzzer [1] and involves additional program instrumentation to check
if a particular execution trace is accepted by the Büchi automaton
representing the negation of the given LTL property.

We evaluated LTL-Fuzzer on well-known and large-scale pro-
tocol implementations such as OpenSSL, OpenSSH, and Telnet.
We show that it efficiently finds bugs that are violations of both
safety and liveness properties. We use LTL-Fuzzer to reproduce
known bugs/violations in the protocol implementations. More im-
portantly, for 50 LTL properties that we manually extracted from
Request-for-Comments (RFCs), LTL-Fuzzer found 15 new bugs
(representing the violation of these properties), out of which 12
CVEs have been assigned. These are zero-day bugs which have
previously not been found. We make the data-set of properties and

the bugs found available with this paper. We expect that in future,
other researchers will take forward the direction in this paper to
detect temporal property violations via greybox fuzzing. The data-
set of bugs found by LTL-Fuzzer can thus form a baseline standard
for future research efforts. The dataset and tool are available at
https://github.com/ltlfuzzer/LTL-Fuzzer

2 APPROACH OVERVIEW

At a high level, our approach takes a sequential program 𝑃 and a
Linear-time Temporal Logic (LTL) property 𝜙 as inputs. The atomic
propositions in 𝜙 refer to predicates over the program variables that
can be evaluated to true or false. An example is a predicate 𝑥 > 𝑦

in which 𝑥 and 𝑦 are program variables. Our approach identifies
program locations at which the atomic propositions in the LTL
property may be affected. For this, we find program locations at
which the values of variables in the atomic proposition and their
aliases may change.1 Our technique outputs a counterexample, i.e., a
concrete program input that leads to a violation of the specification.
Counterexample generation proceeds in two phases. In the first
phase, the program 𝑃 is transformed into 𝑃 ′. For this, we use code
instrumentation to monitor program behaviors and state transitions
during program execution. We check these against the provided
LTL property. In the second phase, a fuzz campaign is launched for
the program 𝑃 ′ to find a counterexample through directed fuzzing.

We illustrate our technique with an FTP implementation called
Pure-FTPd2. Pure-FTPd is a widely-used open source FTP server
which complies with the FTP RFC3. Here is a property described in
the RFC that an FTP implementation must satisfy. The FTP server
must stop receiving data from a client and reply with code 552 when
user quota is exceeded while receiving data. Code 552 indicates
the allocated storage is exceeded. Throughout this paper, we will
use this FTP property – as represented by 𝜙 – to illustrate how our
technique finds property violations in Pure-FTPd.

2.1 LTL Property Construction

We start by manually translating the informal property in the
RFC into a LTL property 𝜙 . For this, we search the Pure-FTPd
source code using keywords APPE and 552. Source code analy-
sis reveals that (1) Pure-FTPd implements a quota-based mecha-
nism to manage user storage space and it works only when ac-
tivated, and (2) the command APPE is handled by the function
dostor(), in which user_quota_size is checked when receiving
data. When the quota is exceeded, the server replies with code 552
(MSG_QUOTA_EXCEEDED) via the function addreply(). We therefore
construct the property 𝜙 as

¬𝐹 (𝑎 ∧ 𝐹 (𝑜 ∧𝐺¬𝑛)) (1)

The negation of 𝜙 is thus

𝐹 (𝑎 ∧ 𝐹 (𝑜 ∧𝐺¬𝑛))
where definition of atomic propositions 𝑎, 𝑜, 𝑛 appear in Table 1.

Next, we identify program locations where the values of vari-
ables in atomic propositions in 𝜙 may change at runtime. A simple

1In general, our approach requires an alias analysis to map the atomic propositions to
program locations.
2https://www.pureftpd.org/project/pure-ftpd/
3https://www.w3.org/Protocols/rfc959/
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Table 1: Mapping between atomic propositions and

program locations (“...” indicates omitted loop entries).

Predicate Atomic Prop. Locations
𝑞𝑢𝑜𝑡𝑎_𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑 = 𝑡𝑟𝑢𝑒 𝑎 ⟨𝑓 𝑡𝑝𝑑.𝑐, 6072⟩
𝑢𝑠𝑒𝑟_𝑑𝑖𝑟_𝑠𝑖𝑧𝑒 > 𝑢𝑠𝑒𝑟_𝑞𝑢𝑜𝑡𝑎 𝑜

⟨𝑠𝑎𝑓 𝑒_𝑟𝑤.𝑐, 12⟩
⟨𝑠𝑎𝑓 𝑒_𝑟𝑤.𝑐, 43⟩

𝑚𝑠𝑔_𝑞𝑢𝑜𝑡𝑎_𝑒𝑥𝑐𝑒𝑒𝑑𝑒𝑑 = 𝑡𝑟𝑢𝑒 𝑛
⟨𝑓 𝑡𝑝𝑑.𝑐, 4444⟩
⟨𝑓 𝑡𝑝𝑑.𝑐, 3481⟩

𝑙𝑜𝑜𝑝_𝑒𝑛𝑡𝑟𝑦 = 𝑡𝑟𝑢𝑒 𝑙 ⟨𝑓 𝑡𝑝𝑑.𝑐, 4067⟩ ...

example is the proposition 𝑞𝑢𝑜𝑡𝑎_𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑 = 𝑡𝑟𝑢𝑒 , which corre-
sponds to the program location where quota checking is enabled in
Pure-FTPd. At another statement, 𝑢𝑠𝑒𝑟_𝑑𝑖𝑟_𝑠𝑖𝑧𝑒 > 𝑢𝑠𝑒𝑟_𝑞𝑢𝑜𝑡𝑎, we
consider the first statement of functions that are used to store data
in user directories. As a result, whenever data is written to user di-
rectories, those functions will be invoked and this proposition will
be evaluated, i.e., all cases where user quota is exceeded will be cap-
tured in an execution. For𝑚𝑠𝑔_𝑞𝑢𝑜𝑡𝑎_𝑒𝑥𝑐𝑒𝑒𝑑𝑒𝑑 = 𝑡𝑟𝑢𝑒 , we identify
function invocations of addreply(552, MSG_QUOTA_EXCEEDED...)
which are a reply to clients when the quota is exceeded. Specific
program locations for each atomic proposition are listed in Table 1.
Their corresponding code snippets are shown in Listings 1, 2, 3,
and 4. Here, we show one code snippet per atomic proposition. For
convenience, we use a tuple ⟨𝑙, 𝑝, 𝑐𝑝 ⟩ in which 𝑙 denotes a program
location, 𝑝 is an atomic proposition, and 𝑐𝑝 represents the predi-
cate for the atomic proposition 𝑝 . At the end of our manual LTL
property generation process, we output a list 𝐿 comprising such
tuples. For the example property, the manual process of writing
down the predicates and the accompanying tuples was completed
by one of the authors in 20 minutes.

Listing 1: Enabling the user quota option:<ftpd.c, 6072>.

6063 #ifdef QUOTAS
6064 case 'n': {
...
6072 user_quota_size *= (1024 ULL * 1024 ULL);
6073 + if(1){
6074 + generate_event("a");
6075 + if(liveness) record_state ();
6076 + }

Listing 2: Writing to user directories:<safe_rw.c, 12>.

12 safe_write(const int fd, const void * const buf_ ,
13 size_t count , const int timeout)
14 {
15 + if(user_dir_size > user_quota){
16 + generate_event("o");
17 + if(liveness) record_state ();
18 + }

Listing 3: Replying msg_quota_exceeded:<ftpd.c, 4444>.

4442 afterquota:
4443 if (overflow > 0) {
4444 addreply (552, MSG_QUOTA_EXCEEDED , name);
4445 + if(1){
4446 + generate_event("n");
4447 + if(liveness) record_state ();
4448 + }

Listing 4: Entry of a loop statement:<ftpd.c. 4067>.

4066 for (;;) {

0

1

1a

!o

2o

!n

Figure 1: Büchi automata accepting traces satisfying
¬𝜙 .

4067 + if(1){
4068 + generate_event("l");
4069 + if(liveness) record_state ();
4070 + }

2.2 Program Transformation

After deriving the property 𝜙 and the list of tuples 𝐿, we transform
program 𝑃 into 𝑃 ′, which can report a failure at runtime whenever
𝜙 is violated. We perform this program transformation using two
instrumentation modules: (1) Event generator, which generates an
event when a proposition in 𝜙 is evaluated to true at runtime; (2)
Monitor, which collects the generated events into an execution
trace and evaluates if the trace violates 𝜙 . If a violation is found,
the monitor reports a failure.

Event Generator. To detect changes in 𝜙 ’s proposition values
during program execution, the event generator injects event gen-
eration statements at specific program locations. To do so, the
generator takes the list 𝐿 produced in the previous step as input.
For each tuple ⟨𝑙, 𝑝, 𝑐𝑝 ⟩ ∈ 𝐿, the generator injects a statement
if(𝑐𝑝) generate_event("𝑝"); at the program location 𝑙 , such
that an event associated with 𝑝 can be generated when condition
𝑐𝑝 is satisfied. For instance, the program location ⟨𝑓 𝑡𝑝𝑑.𝑐, 6072⟩
corresponds to the proposition variable 𝑎 (𝑞𝑢𝑜𝑡𝑎_𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑 = 𝑡𝑟𝑢𝑒)
and the enabling condition is true. The generator then inserts a
statement if(1) generate_event("a"); at line 6072 in ftpd.c
(see Listing 1). Consequently, whenever ⟨𝑓 𝑡𝑝𝑑.𝑐, 6072⟩ is reached,
an event associated with 𝑎 is generated and recorded at runtime.
Instrumentation for the other tuples appear in Listings 2, 3, and 4.

Monitor. The monitor module inserts a monitor into program 𝑃

to verify if the program behavior conforms to property 𝜙 at runtime.
Specifically, the monitor produces a trace 𝜏 by collecting events
that are generated during execution (by the instrumented code).
It then converts the negation of 𝜙 to a Büchi automata A¬𝜙 , and
checks whetherA¬𝜙 accepts 𝜏 . If the trace is accepted, the monitor
reports a failure, i.e.,𝜙 does not hold in 𝑃 . In our Pure-FTPd example,
the negation of 𝜙 is 𝐹 (𝑎 ∧ 𝐹 (𝑜 ∧𝐺¬𝑛)), and the converted Büchi
automata A¬𝜙 is illustrated in Figure 1.

Checking Safety Properties. A Büchi automata accepts a trace 𝜏 if
and only if 𝜏 visits an accepting state of the automata “infinitely
often” (e.g., state 2 in Figure 1). For the negation of a safety property
(¬𝜙), the Büchi automata A¬𝜙 accepts all traces which reach an
accepting state, since all traces reaching an accepting state will
loop there infinitely often. Since only a finite prefix of the trace is
relevant for obtaining the counter-example of a safety property, the
monitor thus outputs a counterexample if it witnesses a trace that
leads to an accepting state in the Büchi automata A¬𝜙 .
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Checking Liveness Properties. The Büchi automata of the negation
of 𝜙 accepts a trace 𝜏 if and only if 𝜏 visits an accepting state of
A¬𝜙 “infinitely often” (e.g., state 2 in Figure 1). For instance, an
infinite trace 𝑎, 𝑜, (𝑣)𝜔 in which 𝑣 ≠ 𝑛 will be accepted by A¬𝜙 .
Formally, such a trace has the form 𝜏 = 𝜏1 (𝜏2)𝜔 (|𝜏2 | ≠ 0), where 𝜏1
starts in an initial state of the Büchi automata A¬𝜙 and runs until
an accepting state 𝑠 of A¬𝜙 , and 𝜏2 runs from the accepting state
𝑠 back to itself. Witnessing a trace 𝜏 = 𝜏1 (𝜏2)𝜔 in which 𝜏2 occurs
“infinitely many times” is difficult in practice, since a fuzz campaign
visits program executions which are necessarily of finite length.
A straightforward approach to tackle this difficulty is to detect a
loop in the trace and terminate execution when witnessing the loop

occurs𝑚 times, e.g., 𝜏 = 𝜏1,

𝑚︷  ︸︸  ︷
𝜏2𝜏2 · · ·. This approach is insufficient

because witnessing 𝜏2 for 𝑚 times does not guarantee 𝜏2 occurs
infinitely often, for instance for (i=0; i<m+2; i++){... 𝜏2...}
may generate 𝜏2 for𝑚 times but stops generating 𝜏2 after i==m+1.

In this paper, we record program states when events associated
with atomic propositions occur in the execution and detect a state
loop in the witnessed trace. If the execution of the state loop pro-
duces 𝜏2, that means, trace 𝜏2 can be generated infinitely many
times by repeatedly going through the state loop. As a result, we
assume that the witnessed trace can be extended to an infinite
𝜏1 (𝜏2)𝜔 shaped trace. Consider following two sequences witnessed
in the execution

𝜏𝑒 = 𝑒0𝑒1 · · · 𝑒𝑖𝑒𝑖+1 · · · 𝑒𝑖+ℎ𝑒𝑖 · · · 𝑒𝑖+ℎ

𝜏𝑠 = 𝑠0𝑠1 · · ·

𝑙𝑜𝑜𝑝 𝑏𝑜𝑑𝑦︷          ︸︸          ︷
𝑠𝑖𝑠𝑖+1 · · · 𝑠𝑖+ℎ 𝑠𝑖+ℎ+1 · · · 𝑠𝑖+2ℎ

where 𝜏𝑒 is a sequence of events associatedwith atomic propositions
that occur in the execution and 𝜏𝑠 is a sequence of program states
that are recorded when events occur, for instance 𝑠𝑖 indicates the
program state that is recorded when the event 𝑒𝑖 occurs. Suppose
𝑠𝑖 is identical to 𝑠𝑖+ℎ+1, then 𝑠𝑖 · · · 𝑠𝑖+ℎ+1 is a state loop and its loop
body is 𝑠𝑖 · · · 𝑠𝑖+ℎ . Whenever 𝑠𝑖 takes input 𝐼𝑠𝑖 · · ·𝑠𝑖+ℎ+1 that leads to
𝑠𝑖 from 𝑠𝑖+ℎ+1, 𝑠𝑖 will transition to 𝑠𝑖 itself. We assume that the
system under test is a reactive system taking a sequence of inputs
and it is deterministic, that is, the same input always leads to the
same program behavior in the execution. Thus, 𝑒𝑖𝑒𝑖+1 · · · 𝑒𝑖+ℎ can
be generated infinitely many times by repeatedly executing input
𝐼𝑠𝑖 · · ·𝑠𝑖+ℎ+1 on state 𝑠𝑖 . Trace 𝜏𝑒 = 𝑒0 · · · 𝑒𝑖−1 (𝑒𝑖 · · · 𝑒𝑖+ℎ)𝜔 can be
generated by running input 𝐼𝑠0 · · ·𝑠𝑖 (𝐼𝑠𝑖 · · ·𝑠𝑖+ℎ+1 )𝜔 , where 𝐼𝑠0 · · ·𝑠𝑖 is an
input that leads to state 𝑠𝑖 from 𝑠0 and 𝐼𝑠𝑖 · · ·𝑠𝑖+ℎ+1 is an input that
leads to 𝑠𝑖 from 𝑠𝑖+ℎ+1.

As explained, occurrence of a state loop in the execution is evi-
dence that thewitnessed trace can be extended to an infinite 𝜏1 (𝜏2)𝜔
shaped trace. We leverage this idea to find a violation of a liveness
property. When witnessing a trace in the execution that can be
extended to a 𝜏1 (𝜏2)𝜔 shaped trace that is accepted by Büchi au-
tomata A¬𝜙 , we consider a violation of the liveness property has
been found. Hence, for liveness property guided fuzzing, we enrich
the program transformation of 𝑃 to 𝑃 ′ as follows: (1) instrumenting
a function call that records the current program state when an
event appearing in a transtion label ofA¬𝜙 occurs in the execution
(shown in Listing 1-4) — specifically, function call record_state()
takes the current program state and generates a hash code for

the state at runtime; (2) instrumenting event-generating and state-
recording statements at the entries of for and while loop state-
ments in the program to observe possible loops in fuzzing. Listing 4
shows the instrumentation of a for loop statement in Pure-FTPd.
More detailed and specific optimizations about state saving for
checking liveness properties, appear in Section 5.

2.3 Witnessing Event Sequences

Since program 𝑃 ′, generated in the previous step, reports a failure
when 𝜙 is violated, we can find a counterexample for 𝜙 by fuzzing
𝑃 ′. An input that leads to such a failure is a counterexample. How-
ever, finding an input of this kind is challenging because it has to
generate an execution in which certain events occur in a specific
order. In our running example of Pure-FTPd, the quota mechanism
must be activated first in the execution, then 𝑢𝑠𝑒𝑟_𝑞𝑢𝑜𝑡𝑎 must be
exceeded, and finally the execution must enter a loop in which no
𝑚𝑠𝑔_𝑞𝑢𝑜𝑡𝑎_𝑒𝑥𝑐𝑒𝑒𝑑𝑒𝑑 is sent back to the client. Existing directed
fuzzing approaches like AFLGo [17] aim to direct fuzzing towards
a particular program location and cannot drive execution through
multiple program locations in a specific order. We now discuss our
Büchi automata guided fuzzing in the next section.

3 BÜCHI AUTOMATA GUIDED FUZZING

Given an LTL property 𝜙 to be checked, automata-theoretic model
checking of LTL properties [62] constructs the Büchi automataA¬𝜙
accepting all traces satisfying¬𝜙 . In this sectionwewill discuss how
A¬𝜙 can be used to guide fuzzing. First we design a mechanism
to generate an input whose execution passes through multiple
program locations in a specific order. We design this mechanism
by augmenting a greybox fuzzer in two ways.
• Power scheduling. During fuzzing, the power scheduling
component tends to select seeds closer to the target on the
pre-built inter-procedural control flow graph. Thus, the tar-
get can be reached efficiently. To achieve this, we use the
fuzzing algorithm of AFLGo [17].
• Input prefix saving. This component observes execution and
records input elements that have been consumedwhen reach-
ing a target.

As mentioned, we focus on fuzzing reactive systems that take a
sequence of inputs. The mechanism we follow involves directing
fuzzing towards multiple program locations in a specific order.
Consider a sequence of program locations 𝑙1, 𝑙2 · · · 𝑙𝑚 . Our approach
works as follows: first, it takes 𝑙1 as the first target and focuses
on generating an input that leads to 𝑙1. Meanwhile, it observes
execution and records the prefix 𝑖1 that leads to 𝑙1. Next, it takes 𝑙2
as the target, and focuses on exploring the space of inputs starting
with prefix 𝑖1, i.e., keeping generating inputs starting with 𝑖1. As a
result, an input that reaches 𝑙2 via 𝑙1 can be generated.

Based on the above mechanism of visiting a sequence of program
locations, we develop an automata-guided fuzzing approach. The
approach uses the Büchi automata A¬𝜙 instrumented in program
𝑃 ′ and observes the progress that each trace makes on A¬𝜙 at
runtime, e.g., how many state transitions are made towards the
accepting state. To guide fuzzing, the approach saves the progress
each input achieves on A¬𝜙 and uses it to generate inputs that
make further progress. Specifically, it saves the progress for each
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input by recording state transitions that are executed on A¬𝜙 and
the input prefix that leads to those transitions. Consider input 𝑖0 and
its trace 𝜏0 goes from initial state 𝑠0 to state 𝑠𝑚 on automata A¬𝜙 .
The achieved progress is represented as a tuple ⟨𝑥𝑖0, 𝑥

𝑠
0⟩, where 𝑥

𝑖
0

is the shortest prefix of 𝑖0 whose execution trace goes from 𝑠0 to
𝑠𝑚 and 𝑥𝑠0 is the state transition sequence 𝑠0 · · · 𝑠𝑚 visited. Such
progress tuples are stored into a set X and are used to guide fuzzing.

For input generation, the approach takes a tuple from X and
uses it to generate inputs that makes further progress. Consider a
tuple ⟨𝑥𝑖 , 𝑥𝑠 ⟩: 𝑥𝑠 records state transitions on automata A¬𝜙 which
input prefix 𝑥𝑖 has led to. Thus, we can query A¬𝜙 with 𝑥𝑠 to find
a transition that makes further progress, i.e., a state transition that
gets closer to an accepting state of A¬𝜙 . In the example, assuming
𝑥𝑠 is state 0 in Figure 1, then the transition from state 0 to state 1 will
be identified since state 1 is closer to the accepting state 2. Suppose
𝑡 is the next progressive state transition of 𝑥𝑠 , then we can further
query A¬𝜙 to obtain atomic propositions that trigger transition
𝑡 . Then, by querying the map between atomic propositions and
program locations, we can identify program locations for those
atomic propositions. In the example, atomic proposition 𝑎 triggers
transition from state 0 to state 1 and its corresponding program
location is ⟨𝑓 𝑡𝑝𝑑.𝑐, 6072⟩, as shown in Table 1.

From the above we can define criteria for an input to make
further progress: (1) its execution has to follow the path that an
input prefix 𝑥𝑖 has gone through such that the generated trace can
go through state transitions 𝑥𝑠 ; and, (2) subsequently the execution
reaches one of program locations that are identified above to ensure
the generated trace takes a step further in A¬𝜙 .

To generate inputs of this kind, our mechanism for generating
inputs that traverse a sequence of program locations in a specific
order comes into play. Assume 𝑙𝑖 is one of program locations identi-
fied above, for making further "progress" in A¬𝜙 . The mechanism
takes 𝑙𝑖 as the target and keeps generating inputs that start with
prefix 𝑥𝑖 until generating an input that starts with prefix 𝑥𝑖 and
subsequently visits location 𝑙𝑖 . This is how our approach uses tuples
in X to generate inputs that make further "progress" towards an
accepting state in the Büchi automata A¬𝜙 . The detailed fuzzing
algorithm is now presented.

4 FUZZING ALGORITHM

Algorithm 1 shows the workflow of our counterexample guided
fuzzing. To find a counterexample, the algorithm guides fuzzing in
two dimensions. First, it prioritizes the exploration of inputs whose
execution traces are more likely to be accepted byA¬𝜙 . Specifically,
if the trace of the prefix of an input reaches a state that is closer to
an accepting state on A¬𝜙 , then its trace is more likely to be ac-
cepted. The algorithm selects input prefixes whose traces have been
witnessed to get close to an accepting state and keeps generating
inputs starting with them (shown in line 5 and line 10). Secondly,
the algorithm focuses on generating inputs whose execution makes
further progress onA¬𝜙 . Given an input prefix, the algorithm finds
a state transition 𝑡 that helps us get closer to an accepting state
in A¬𝜙 , and finds the atomic propositions which enable 𝑡 to be
taken (line 6). For the atomic propositions enabling transition 𝑡 ,
we identify the corresponding program locations (line 7). Then
we attempt to generate inputs that reach the program location in

Algorithm 1: Counterexample-Guided Fuzzing
Input: 𝑃 ′: The transformation of program under test
Input: A¬𝜙 : Automata of negation of property under test
Input:𝑚𝑎𝑝 : Map between propositions and program locations
Input: 𝑓 𝑙𝑎𝑔: True for liveness properties
Input: 𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒 : Time budget for fuzzing
Input: 𝑡𝑎𝑟𝑔𝑒𝑡_𝑡𝑖𝑚𝑒 : Time budget for reaching a program location

1 Procedure Fuzz(𝑃 ′, A¬𝜙 ,𝑚𝑎𝑝 , 𝑓 𝑙𝑎𝑔, 𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒 , 𝑡𝑎𝑟𝑔𝑒𝑡_𝑡𝑖𝑚𝑒)
2 𝑠0 ← getInitState(A¬𝜙 ) ;
3 X ← {⟨∅, 𝑠0 ⟩ } ; // Starting with init state of A¬𝜙
4 for 𝑡𝑖𝑚𝑒 < 𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒 do

5 ⟨𝑥𝑖𝑡 , 𝑥𝑠𝑡 ⟩ ← selectPrefix(X) ;
6 𝑝 ← selectTargetAtomicProposition(A¬𝜙 , 𝑥𝑠𝑡 ) ;
7 𝑙 ← selectProgramLocationTarget(𝑚𝑎𝑝, 𝑝) ;
8 for 𝑡𝑖𝑚𝑒′ < 𝑡𝑎𝑟𝑔𝑒𝑡_𝑡𝑖𝑚𝑒 do

// D: Feedback of CFG distance

// 𝑆𝑝𝑜𝑤𝑒𝑟 : Power schedule algorithm

9 𝐼 ← generateInput(D, 𝑆𝑝𝑜𝑤𝑒𝑟 ) ;
10 𝐼 ′ ← replacePrefix(𝐼 , 𝑥𝑖𝑡 ) ;
11 𝑑, ⟨𝑥𝑖 , 𝑥𝑠 ⟩ ← evaluate(𝑃 ′, 𝐼 ′, 𝑓 𝑙𝑎𝑔) ;
12 D ← D ∪ {𝑑 } ;
13 X ← X ∪ {⟨𝑥𝑖 , 𝑥𝑠 ⟩ }
14 end

15 end

the execution and trigger the program behavior associated with
the atomic proposition. As a result, the generated trace can make
further progress in A¬𝜙 . To generate inputs that reach a particular
program location, we leverage the algorithm proposed in AFLGo
(line 8-14). Its idea is to assign more power to seeds that are closer
to the target on a pre-built control flow graph such that the gener-
ated inputs are more likely to reach the target. The time budget for
reaching a target is configurable, via parameter 𝑡𝑎𝑟𝑔𝑒𝑡_𝑡𝑖𝑚𝑒 .

For prefix selection (line 5), the algorithm defines a fitness func-
tion to compute a fitness value for each prefix tuple. Given a tuple
⟨𝑥𝑖𝑡 , 𝑥𝑠𝑡 ⟩, its fitness value is

𝑓𝑡 =
𝑙𝑠

𝑙𝑠 + 𝑙𝑎
+ 1
𝑙𝑖

where 𝑙𝑠 is the length of 𝑥𝑠𝑡 and 𝑙𝑎 is the length of the shortest
path from the last state of 𝑥𝑠𝑡 to an accepting state on A¬𝜙 and 𝑙𝑖
is the length of input prefix 𝑥𝑖𝑡 . As shown in the formula, a prefix
tuple has a higher fitness value if the last state of 𝑥𝑠𝑡 is closer to an
accepting state onA¬𝜙 and the input prefix is shorter. Heuristically,
by extending such a prefix, our fuzzing algorithm is more likely to
generate an input whose execution trace is accepted byA¬𝜙 . Prefix
tuples with higher fitness values are prioritized for selection.

For atomic proposition selection (line 6), we adopt a random se-
lection strategy. Consider tuple ⟨𝑥𝑖𝑡 , 𝑥𝑠𝑡 ⟩ and the last state of 𝑥𝑠𝑡 is 𝑠𝑡 ,
the algorithm identifies atomic propositions that make a progressive
transition from 𝑠𝑡 on A¬𝜙 as follows: if state 𝑠𝑡 is not an accepting
state ofA¬𝜙 , any atomic proposition that triggers a transition from
𝑠𝑡 towards an accepting state is selected. If state 𝑠𝑡 is an accepting
state, any atomic proposition that triggers a transition from 𝑠𝑡 back
to itself is selected. For simplicity, the algorithm randomly selects
one from the identified atomic propositions. When the selected
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proposition 𝑝 has multiple associated program locations, we ran-
domly select one of them as a target. The main consideration for
adopting a random strategy is to keep our technique as simple as
possible. Moreover, these strategies can be configured in our tool.

5 STATE SAVING

In liveness property verification, LTL-Fuzzer detects a state loop in
the witnessed trace. If a state loop is detected, LTL-Fuzzer assumes
the current trace can be extended to a lasso-shaped trace 𝜏1 (𝜏2)𝜔 .
This works with a concrete representation of program states, how-
ever in reality state representation of software implementations are
always abstracted. State representations that are too abstract may
miss capturing variable states that are relevant to the loop, which
leads to false positives. State representations that are too concrete
may contain variable states that are irrelevant to the loop such as
a variable for system-clock, which leads to false negatives. To be
practical, LTL-Fuzzer takes a snapshot of application’s registers
and addressable memory and hashes it into a 32-bit integer, which
is recorded as a state. Addressable memory indicates two kinds of
objects: (1) global variables (2) objects that are explicitly allocated
with functions malloc() and alloca(). Such a convention was
also adopted in previous works on infinite loop detection [20, 59].

Furthermore, LTL-Fuzzer only records a program state for se-
lected program locations, not for all program locations. Specifically,
we only save states for the program locations associated with the
transition labels of the automataA¬𝜙 where 𝜙 is the liveness prop-
erty being checked. Note that a transition label in A¬𝜙 is a subset
of atomic propositions [62, 63]. The full set of atomic propositions
is constructed by taking the atomic propositions appearing in 𝜙 and
embellishing this set with atomic propositions that we introduce
for occurrence of each program loop header (such as 𝑙 in Table 1). If
the transition label involves a set 𝐿 of atomic propositions, we track
states for only those atomic propositions in 𝐿 which correspond
to loop header occurrences. The goal here is to quickly find possi-
ble infinite loops by looking for a loop header being visited with
the same program state. Hence for the transition label !𝑛 in our
running example, we only store states for the program locations
corresponding atomic proposition 𝑙 in Table 1.

Listing 5: Quota checking:<ftpd.c. 4315>.

4315 if(...( max_filesize >= (off_t) 0 &&
(max_filesize=user_quota_size - quota.size)
< (off_t) 0 )){

...
4322 goto afterquota;
4323 }

In the example shown in Section 2, LTL-Fuzzerwitnesses a state
generated at program location ⟨𝑓 𝑡𝑝𝑑.𝑐, 4067⟩ (shown in Listing 4)
that has been observed before and at the same time the witnessed
trace is accepted by A¬𝜙 . In this case, LTL-Fuzzer reports a vio-
lation of the LTL property 𝜙 shown in Page 2. To validate if the
violation is spurious, we check if the observed state loop can be
repeated in the execution. Our analysis shows a chunk of data was
read during the execution of the state loop and the chunk of data
was from a file uploaded by the client. We duplicated the chunk
of data in the uploaded file and reran the experiment and found
the state loop was repeated. That means the witnessed trace can

be extended to a 𝜏1 (𝜏2)𝜔 shaped trace, which visits the accepting
state of the automata accepting ¬𝜙 (shown in Figure 1) infinitely
many times. Thus, the reported violation is not spurious.

We further analyzed the root cause of the violation. It shows
there was a logical bug in the quota checking module. As shown in
Listing 5, the assignment of max_filesize occurs in a conditional
statement and is never executed due to that max_filesize’s initial
value is -1. To fix the bug, we created a patch and submitted a pull
request on the Github repo of Pure-FTPd, which has been confirmed
and verified.

6 LTL-FUZZER IMPLEMENTATION

We implement LTL-Fuzzer as an open source tool built on top of
AFL, which comprises two main components: instrumentor and
fuzzer. In the following, we explain these components.

6.1 Instrumentation Module

AFL comes with a special compiler pass for clang that instruments
every branch instruction to enable coverage feedback. By extending
this compiler, we instrument a program under test at three levels:
specific locations, basic blocks, and the application.

Specific locations. LTL-Fuzzer takes a list of program loca-
tions at which program behaviors associated with a property under
test might occur. At each of the given program locations, the in-
strumentation module injects two components: event generator and
state recorder. Event generator is a piece of code that generates an
event when the provided condition is satisfied at run-time. The state
recorder is a component that takes a snapshot of program states
and generates a hash code for the state when the given program
location is reached in the execution.

Basic blocks. LTL-Fuzzer guides fuzzing to a target using the
feedback on how close to the target an input is as explained in
Section 3. At runtime, LTL-Fuzzer requires the distance from each
basic block to the target on the CFG (control flow graph). The
instrumentor instruments a function call in each basic block at
runtime. The function call will query a table that stores distances
from each block to program locations associated with the given
property (i.e., targets). The distance from a basic block to each
program location is computed offline with the distance calculator
component that is borrowed from AFLGo [17].

Applications. For a program under test, the instrumentation mod-
ule injects a monitor into the program. During fuzzing, the monitor
collects events generated by instrumented event generators and
produces execution traces. For property checking, the monitor
leverages Spot libraries [10] to generate a Büchi automata from
the negation of an LTL property and validates these traces. The
instrumentation module also instruments an observer in the pro-
gram that monitors execution of inputs; it maps a given suitable
execution trace prefix to the input event sequence producing it, so
that the occurrence of the prefix can be detected by the observer,
during fuzzing. The fuzzing process then seeks to further extend
this prefix with "suitable" events as described in the following.
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Figure 2: The architecture of LTL-Fuzzer.

6.2 Fuzzer

Figure 2 shows the Fuzzer component’s architecture. It mainly com-
prises two modules: prefix controller and fuzz engine. LTL-Fuzzer
saves input prefixes whose execution traces make transitions on
the automata and reuses them for further exploration (Section 3).
At runtime, the prefix controller conducts three tasks: (1) collecting
prefixes reported by the monitor instrumented in the program un-
der test and storing them into a pool; (2) selecting a prefix from the
pool for further exploration according to Algorithm 1; (3) identify-
ing the target program location based on the selected prefix. The
fuzz engine is obtained by modifying AFL [1]. It generates inputs
starting with a given input prefix. To reach a target, our fuzzer
integrates the power scheduling component developed in AFLGo
[17] to direct fuzzing. In LTL-Fuzzer, we direct execution to reach
a target after the execution of an input prefix. Thus, the fuzz engine
collects no feedback, such as coverage data during execution of the
input prefix, and only collects feedback data after the execution of
the input prefix is completed.

7 EVALUATION

In our experiments, we seek to answer the following questions:
RQ1 Effectiveness: How effective is LTL-Fuzzer at finding LTL

property violations?
RQ2 Comparison: How does LTL-Fuzzer compare to the state-

of-the-art validation tools in terms of finding LTL property
violations?

RQ3 Usefulness: How useful is LTL-Fuzzer in revealing LTL
property violations in real-world systems?

7.1 Subject Programs

Table 2 lists the subject programs used in our evaluation. This
includes 7 open source software projects that implement 6 widely-
used network protocols. We selected these projects because they
(1) are reactive software systems that LTL-Fuzzer is designed for,
(2) include appropriate specification documents from which LTL
properties can be generated, and (3) are widely-used and have been
studied. Finding bugs in such real-world systems is thus valuable.

7.2 Experiment Setup

To answer the research questions, we conducted three empirical
studies on the subject programs.

7.2.1 Effectiveness of LTL-Fuzzer. We evaluate LTL-Fuzzer’s ef-
fectiveness by running it on a set of LTL properties in subject
programs where violations are already known; we check the num-
ber of LTL properties for which LTL-Fuzzer can find violations.

Table 2: Detailed information about our subject programs.

Project Protocol #SLOC InPreviousWork GithubStars

ProFTPD [7] FTP 210.8k [52] 339
Pure-FTPd [9] FTP 52.9k [52] 435
Live555 [4] RTSP 52.5k [53] [52] 526
OpenSSL [6] TLS 286.7k [40] [52] [27] 16.3K
OpenSSH [5] SSH 98.3k [32] [52] 1.5K
TinyDTLS [11] DTLS 63.2k [31] [52] 43
Contiki-Telnet [2] TELNET 353.4k [40] 3.4K

To create such a dataset, we collect event ordering related CVEs
(so that they can be captured as a temporal property) that are dis-
closed in subject programs, e.g., an FTP client copies files from
the server without logging in successfully. Specifically, for each
subject, we select 10 such CVEs with criteria: (1) reported recently
(during 2010-2020); (2) include instructions to reproduce the bug,
(3) relevant to event orderings. Then we manually reproduce them
with the corresponding version of code. If a CVE is reproducible,
then we write the property in LTL and put it in our dataset of LTL
properties. Based on the aforementioned criteria, we collected 14
CVEs in 7 subjects as shown in Table 3; these LTL properties can be
found in our dataset 4 and the appendix of our arxiv paper 5. Our
goal is to check experimentally if LTL-Fuzzer can find violations
of these LTL properties.

7.2.2 Comparison with other tools. We evaluate LTL-Fuzzer and
state-of-the-art techniques on the LTL property dataset above and
compare them in terms of the number of LTL properties for which
each technique finds the violations and the time that is used to find
a violation. For state-of-the-art techniques, we reviewed recent and
well-known techniques in model checking, runtime verification
and directed fuzzing domains. We chose the following techniques
for comparison with LTL-Fuzzer.
• AFLGo [17]. It is a well known directed greybox fuzzer which
drives execution to a target with a simulated annealing-based
power schedule that assigns more energy to inputs that hold the
trace closer to the target. We take it as a baseline tool.
• AFLLTL. It is an implementation which enables AFLGo to detect
an LTL property violation. Specifically, AFLLTL powers AFLGo
with only the LTL test oracle such that it can report an error when
the given LTL property is violated in the execution. By comparing
with AFLLTL, we evaluate how effective is our automata-guided
fuzzing strategy in finding LTL property violations. Note that
AFLLTL is also a tool built by us, but it lacks the automata guided
fuzzing of LTL-Fuzzer.
• L+NuSMV. It combines model learning and model checking to
verify properties in a software system. Specifically, it leverages
a learning library called LearnLib [41] to build a model for the
software system and then verifies given properties on the learned
model with the well-known model checker NuSMV [23]. In the
paper, we indicate it with L+NuSMV. This technique was pub-
lished at CAV 2016 [30] and has been subsequently adopted in
recent works such as [67] and [31].

4https://github.com/ltlfuzzer/LTL-Fuzzer/tree/main/ltl-property
5https://arxiv.org/abs/2109.02312
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Table 3: Statistics of found violations and the performance of four tools in finding the violations.

Prop CVE-ID Type of Vulnerability Program Version

LTL-Fuzzer AFLLTL AFLGo L+NuSMV

Time(h) Time(h) �̂�12 Time(h) �̂�12 Time(h) �̂�12

𝑃𝑟𝐹1 CVE-2019-18217 Infinite Loop ProFTPD 1.3.6 4.62 T/O 1.00 T/O 1.00 T/O 1.00

𝑃𝑟𝐹2 CVE-2019-12815 Illegal File Copy ProFTPD 1.3.5 0.95 2.01 0.84 T/O 1.00 T/O 1.00

𝑃𝑟𝐹3 CVE-2015-3306 Improper Access Control ProFTPD 1.3.5 1.14 1.89 0.76 T/O 1.00 T/O 1.00

𝑃𝑟𝐹4 CVE-2010-3867 Illegal Path Traversal ProFTPD 1.3.3 2.06 5.17 0.85 T/O 1.00 T/O 1.00

𝐿𝑉1 CVE-2019-6256 Improper Condition Handle Live555 2018.10.17 5.29 11.13 1.00 11.47 1.00 T/O 1.00

𝐿𝑉2 CVE-2019-15232 Use after Free Live555 2019.02.03 0.22 1.42 0.91 1.46 0.92 T/O 1.00

𝐿𝑉3 CVE-2019-7314 Use after Free Live555 2018.08.26 1.27 4.18 0.98 T/O 1.00 T/O 1.00

𝐿𝑉4 CVE-2013-6934 Numeric Errors Live555 2013.11.26 2.73 2.58 0.40 2.21 0.39 T/O 1.00

𝐿𝑉5 CVE-2013-6933 Improper Operation Limit Live555 2011.12.23 1.80 1.99 0.63 1.45 0.33 T/O 1.00

𝑆𝐻1 CVE-2018-15473 User Enumeration OpenSSH 7.7p1 0.18 0.17 0.44 T/O 1.00 24.00 1.00

𝑆𝐻2 CVE-2016-6210 User Information Exposure OpenSSH 7.2p2 0.19 0.19 0.50 T/O 1.00 24.00 1.00

𝑆𝐿1 CVE-2016-6309 Use after Free OpenSSL 1.1.0a 3.77 6.00 0.74 6.58 0.82 T/O 1.00

𝑆𝐿2 CVE-2016-6305 Infinite Loop OpenSSL 1.1.0 1.45 T/O 1.00 T/O 1.00 T/O 1.00

𝑆𝐿3 CVE-2014-0160 Illegal Memory Access OpenSSL 1.0.1f 1.11 7.31 1.00 T/O 1.00 T/O 1.00

Found violations in total - 14 12 5 2
Average time usage (hours) - 1.91 6.57 17.08 24.00
Comparison with LTL-Fuzzer on time usage - - 3.44x 8.93x 12.55x
1 T/O represents tools cannot expose vulnerabilities within 24 hours for 10 experimental runs. We replace T/O with 24 hours when calculating average usage time.
2 Statistically significant values of �̂�12 are shown in bold.

We briefly summarize why we did not include certain other model-
checkers and fuzzers, and all runtime verification tools for com-
parison. Model checking tools CBMC [24], CPAChecker [16]6, Sea-
horn [36], SMACK [55], UAutomizer [38], DIVINE [14] cannot sup-
port LTL property verification. Schemmel’s work [59] published at
CAV 2018 partially supports LTL property verification. SPIN [39]
supports LTL property verification but only works with a modeling
language Promela [8] and the tool provided in SPIN for extracting
models from C programs failed to work on our subject programs.
Some model checking tools [40, 60], and directed fuzzing tools (like
UAFL [66], Hawkeye [22] and TOFU [68]) we reviewed, are not
publicly available.

Finally, all of available runtime verification tools [29] (like Java-
MOP [42], MarQ [57] and Mufin [28]) cannot check LTL properties
in C/C++ software systems. Furthermore, our method is concep-
tually different and complementary to runtime verification — our
method generates test executions, while runtime verification checks
a test execution.While the combination of our methodwith runtime
verification is possible, a comparison is less meaningful.

7.2.3 Real-world utilty. In this study, we read RFC specifications
that these subject programs follow to extract temporal properties
and describe them in LTL. Then we use LTL-Fuzzer to check these
properties on the subject programs.

Configuration Parameters. Following fuzzing evaluation sugges-
tions from the community [46], we run each technique for 24 hours
and repeat each experiment 10 times to achieve statistically signifi-
cant results. For the initial seeds, we use seed inputs provided in
ProFuzzBench [52] for all subjects. ProFuzzBench is a benchmark

6For some tools, the LTL checker module is not available for usage / experimentation,
as our email enquiry with CPAchecker team revealed.

for stateful fuzzing of network protocols, which contains a suite of
representative open-source network protocol implementations. For
Contiki-Telnet, which is not contained in ProFuzzBench, we gen-
erate random inputs as its initial seeds. For LTL-Fuzzer, we need
to specify the time budget for reaching a single program location
and we configure it with 45 minutes for each target. For AFLGo
and AFLLTL, we need to provide a target for an LTL property being
checked. We specify the target by randomly selecting from program
locations that are associated with atomic propositions that trigger
the transition to an accepting state on the automata of the negation
of the property. In the example in Section 2, we chose one of loop
entries as the target since proposition 𝑜 triggers the transition to
the accepting state shown in Figure 1 and it corresponds with loop
entries. For execution environments, we conducted experiments
on a physical machine with 64 GB RAM and a 56 cores Intel(R)
Xeon(R) E5-2660 v4 CPU, running a 64-bit Ubuntu TLS 18.04 as the
operating system.

7.3 Experimental Results

7.3.1 [RQ1] Effectiveness. Table 3 shows property violations found
by LTL-Fuzzer for the 14 LTL properties derived from known CVEs.
The first column shows identifiers of the properties being checked.
The corresponding LTL properties and their descriptions can be
found in our dataset. Columns 2 - 5 represent CVE-IDs, types of
vulnerabilities that CVEs represent, subject names, and subject
versions, respectively. Column “LTL-Fuzzer” shows the time that
is used to find a violation by LTL-Fuzzer. As shown in Table 3,
LTL-Fuzzer can effectively detect violations of LTL properties in
the subjects. It successfully detected the violation for all the 14 LTL
properties in the dataset. On average, it took LTL-Fuzzer 1.91 hours
to find a violation.
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Table 4: Zero-day Bugs found by LTL-Fuzzer; for several of them CVEs have been assigned but CVE ids are not shown.

Prop Project Description of violated properties Bug Status

𝑇𝐷1 TinyDTLS (0.9-rc1) If the server is in the WAIT_CLIENTHELLO state and receives a ClientHello request with valid cookie
and the epoch value 0, must finally give ServerHello responses.

CVE-2021-42143,
Fixed

𝑇𝐷2 TinyDTLS (0.9-rc1)
If the server is in WAIT_CLIENTHELLO state and receives a ClientHello request with valid cookie but
not 0 epoch value, must not give ServerHello responses before receiving ClientHello with 0 epoch
value.

CVE-2021-42142,
Fixed

𝑇𝐷3 TinyDTLS (0.9-rc1) If the server is in the WAIT_CLIENTHELLO state and receives a ClientHello request with an invalid
cookie, must reply HelloVerifyRequest.

CVE-2021-42147,
Fixed

𝑇𝐷5 TinyDTLS (0.9-rc1)
If the server is in the DTLS_HT_CERTIFICATE_REQUEST state and receives a Certificate request, must
give a DTLS_ALERT_HANDSHAKE_FAILURE or DTLS_ALERT_DECODE_ERROR response, or set Client_Auth
to be verified.

CVE-2021-42145,
Fixed

𝑇𝐷11 TinyDTLS (0.9-rc1)
After the server receives a ClientHello request without renegotiation extension and gives a
ServerHello response, then receives a ClientHello again, must refuse the renegotiation with an
Alert.

Confirmed

𝑇𝐷12 TinyDTLS (0.9-rc1)
After the server receives a ClientHello request and gives a ServerHello response, then receives a
ClientKeyExchange request with a different epoch value than that of ClientHello, server must not
give ChangeCipherSpec responses.

CVE-2021-42141,
Fixed

𝑇𝐷13 TinyDTLS (0.9-rc1)
After the server receives a ClientHello request and gives a ServerHello response, then receives
a ClientHello request with the same epoch value as that of the first one, server must not give
ServerHello.

CVE-2021-42146

𝑇𝐷14 TinyDTLS (0.9-rc1) If the server receives a ClientHello request and gives a HelloVerifyRequest response, and then
receives a over-large packet even with valid cookies, the server must refuse it with an Alert.

CVE-2021-42144,
Fixed

𝐶𝑇1 Contiki-Telnet (3.0) After WILL request is received and the corresponding option is disabled, must send DO or DONT responses. CVE-2021-40523
𝐶𝑇2 Contiki-Telnet (3.0) After DO request is received and the corresponding option is disabled, must send WILL or WONT responses. Confirmed
𝐶𝑇7 Contiki-Telnet (3.0) After WONT request is received and the corresponding option is disabled, must not give responses. CVE-2021-38311
𝐶𝑇8 Contiki-Telnet (3.0) After DONT request is received and the corresponding option is disabled, must not give responses. Confirmed
𝐶𝑇10 Contiki-Telnet (3.0) Before Disconnection, must send an Alert to disconnect with clients. CVE-2021-38387
𝐶𝑇11 Contiki-Telnet (3.0) If conducting COMMAND without AbortOutput, the response must be same as the real execution results. CVE-2021-38386

𝑃𝑢𝐹5 Pure-FTPd (1.0.49) When quota mechanism is activated and user quota is exceeded, must finally reply a quota exceed
message.

CVE-2021-40524,
Fixed

LTL-Fuzzer is found to be effective in finding LTL property
violations, detecting violations for all 14 properties derived from
known CVEs.

7.3.2 [RQ2] Comparison. As shown in Table 3, the last three main
columns show the time that is used for comparison techniques to
find a violation on the 14 LTL properties in the experiment. Note
that “T/O” indicates a technique failed to find the violation for an
LTL property in the given time budget (i.e., 24 hours). To mitigate
randomness in fuzzing, we adopted the Vargha-Delaney statistic
𝐴12 [64] to evaluate whether one tool significantly outperforms
another in terms of the time that is used to find a violation. The
𝐴12 is a non-parametric measure of effect size and gives the proba-
bility that a randomly chosen value from data group 1 is higher or
lower than one from data group 2. It is commonly used to evaluate
whether the difference between two groups of data is significant.
Moreover, we also use Mann-Whitney U test to measure the statisti-
cal significance of performance gain. When it is significant (taking
0.05 as a significance level), we mark the 𝐴12 values in bold.

LTL-Fuzzer found violations of all of the 14 LTL properties, fol-
lowed by AFLLTL (12), AFLGo (5), and L+NuSMV (2). We note that
AFLLTL is also a tool built by us, it partially embodies the ideas
in LTL-Fuzzer and is meant to help us understand the benefits
of automata-guided fuzzing. In terms of the time that is used to

find a violation, LTL-Fuzzer is the fastest (1.91 hours), followed by
AFLLTL (6.57 hours), AFLGo (17.08 hours), and L+NuSMV (24.00
hours). In other words, LTL-Fuzzer is 3.44x, 8.93x, 12.55x faster
than AFLLTL, AFLGo, and L+NuSMV, respectively. For CVE-2013-
6934 and CVE-2013-6933, AFLGo performed slightly better than
other techniques, while AFLLTL exhibited the same performance as
LTL-Fuzzer for CVE-2018-15473 and CVE-2016-6210. We investi-
gated these 4 CVEs and found that triggering those vulnerabilities
is relatively straightforward. They can be triggered without sophis-
ticated directing strategies. As a result, other techniques achieve a
slightly better performance than LTL-Fuzzer for these four CVEs.
In terms of the 𝐴12 statistic, LTL-Fuzzer performs significantly
better than other techniques in most cases.

LTL-Fuzzer found violations of all the 14 LTL properties in
the experiment. AFLLTL, AFLGo and L+NuSMV found 12, 5, 2
property violations, respectively. LTL-Fuzzer is 3.44x, 8.93x,
12.55x faster than AFLLTL, AFLGo, and L+NuSMV.

7.3.3 [RQ3] Real-world utility. In this study, we evaluate utility
of LTL-Fuzzer by checking whether it can find zero-day bugs in
real-world protocol implementations. We extract 50 properties from
RFCs that our subject programs follow (aided by comments in the
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source code of the programs) and write them in linear-time tem-
poral logic. The details of the 50 LTL properties can be found in
our dataset. In the experiment, LTL-Fuzzer achieved a promising
result. Out of these 50 LTL properties, LTL-Fuzzer discovered new

violations for 15 properties, which are shown in Table 4. We re-
ported these 15 zero-day bugs to developers and all of them got
confirmed by developers. We reported them on the common vul-
nerabilities and exposures (CVE) system (see https://cve.mitre.org/)
and 12 of them were assigned CVE IDs. Out of 15 reported viola-
tions, 7 have been fixed at the time of the submission of our paper.
Notably, LTL-Fuzzer shows effectiveness in finding violations for
liveness properties. In the experiment, LTL-Fuzzer successfully
found violations for 4 liveness properties which are 𝑃𝑟𝐹1, 𝑆𝐿2,𝑇𝐷1
and 𝑃𝑢𝐹5. All the 4 violations were confirmed by developers, i.e.,
they are not spurious results. Moreover, to discover violations for
these 4 liveness properties, LTL-Fuzzer only recorded 6, 11, 4 and 9
states, respectively. Since every state is recorded as a 32-bit integer,
the memory consumption for recording states is thus found to be
negligible in our experiments.

Among 50 LTL properties extracted from protocol RFCs, LTL-
Fuzzer found 15 previously unknown violations in protocol
implementations and 12 of these have been assigned CVEs.

7.4 Threats to validity

There are potential threats to validity of our experimental results.
One concern is external validity, i.e., the degree to which our results
can be generalized to and across other subjects. To mitigate this
concern, we selected protocol implementations that are widely used
and have been frequently evaluated in previous research (as shown
in Table 2). We may have made mistakes in converting informal
requirements into LTL properties. To reduce this kind of bias, we
let two authors check generated properties and remove those on
which they do not agree, or do not think are important properties.

In principle, LTL-Fuzzer can report false positives due to in-
correct instrumentation, e.g., if we fail to instrument some target
locations for an atomic proposition. We mitigate the risk of false
positives by checking the reported counterexamples and validating
that they are true violations of the temporal property being checked.
We add here that we did not encounter such false positives in any
of our experiments.

Another concern is internal validity, i.e., the degree to which our
results minimize systematic error. First, to mitigate spurious obser-
vations due to the randomness in the fuzzers and to gain statistical
significance, we repeated each experiment 10 times and reported
the Vargha-Delaney statistic 𝐴12. Secondly, our LTL-Fuzzer im-
plementation may contain errors. To facilitate scrutiny, we make
LTL-Fuzzer code available.

8 RELATEDWORK

Model Checkers. Model checking is a well-known property veri-
fication technique dating back to 1980s [25, 54]; it is used to prove
a temporal property in a finite state system, or to find property
violation bugs. The early works check a temporal logic property
against a finite state transition system. There exist well-known
model checkers such as [23, 39, 43] which can be used to check

temporal properties on a constructed model (via state space explo-
ration). To construct models, one method is manual construction
via a modeling language. This requires substantial effort and can
be error-prone [35, 50]. LTL-Fuzzer directly checks software im-
plementations; it does not separately extract models from software.

Early works on model checking have been extended to automat-
ically find bugs in software systems, which are typically infinite-
state systems. Model checking of software systems usually involves
either some extraction of finite state models, or directly analyzing
the infinite state software system via techniques such as symbolic
analysis. Automatic model extraction approaches [12, 26, 37, 58] in-
clude the works on predicate abstraction and abstraction refinement
[12, 13] which build up a hierarchy of finite-state abstract models
for a software system for proving a property. These approaches
extract models which are conservative approximations and capture
a superset of the program behavior. There are a number of stateful
software model checkers, such as CMC [50], Java Pathfinder [65],
MaceMC [44], CBMC [24], CPAchecker [16], which find assertion
violations in software implementations. Many of these checkers
do not check arbitrary LTL properties for software implementa-
tions. These model checkers either suffer from state space explosion,
or suffer from other kinds of explosion such as the explosion in
the size/solving-time for the logical formula in bounded model
checking. In contrast, LTL-Fuzzer does not save any states for
safety property checking and saves only certain property-relevant
program states in liveness property checking. At the same time,
LTL-Fuzzer does not give verification guarantees and does not
perform complete exploration of the state space. We now proceed
to discuss incomplete validation approaches.

Incomplete Checkers. Instead of exploring the complete set of
behaviors, or a super-set of behaviors, one can also explore a subset
of behaviors. Incomplete model learning approaches [61] can be
mentioned in this regard. The active model learning technique,
such as LearnLib [41], is widely used to learn models of real-world
protocol implementations [27, 30–32]. It does not need user involve-
ment. But it is time-consuming and hard to determine whether the
learned model represents the complete behavior of the software
system [61, 69]. Compared with the active learning, LTL-Fuzzer
can more rapidly check properties, as shown in our experimental
comparison with LearnLib+NuSMV. To alleviate the state-explosion
problem, stateless checkers such as VeriSoft [33] and Chess [51]
have been proposed; these checkers do not store program states.
These works typically involve specific search strategies to check
specific classes of properties such as deadlocks, assertions and so
on. In contrast, LTL-Fuzzer represents a general approach to find
violations of any LTL property.

Runtime Verification. Runtime verification is a lightweight and
yet rigorous verification technique [15, 48]. It analyzes a single
execution trace of a system against formally specified properties
(e.g., LTL properties). It origins from model checking and applies
model checking directly to the real implementations. Model check-
ing checks a model of a target system to verify correctness of the
system, while runtime verification directly checks the implemen-
tation, which could avoid different behaviours between models
and implementations. LTL-Fuzzer shares the same benefit as run-
time verification. Besides, runtime verification deals with finite
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executions, as one single execution has necessarily to be finite. This
avoids the state explosion problem that model checking suffers
from. Meanwhile, it leads to that runtime verification approaches
[21, 28, 42, 57] often only check safety properties. LTL-Fuzzer, how-
ever, is able to check liveness properties by leveraging the strategy
of saving program states.

Conceptually, our method is very different from runtime verifi-
cation. Runtime verification focuses on the checking (a temporal
logic property) on a single execution. Our method is focused on
using temporal logic property to guide the construction of an ex-
ecution which violates the property. Thus our work is more of a
test generation method. Since runtime verification methods need
tests whose execution will be checked, our method can be comple-
mentary to runtime verification. In other words, our method can
generate tests likely to violate a given temporal property, and these
tests can further validated by run-time verification.

Greybox Fuzzing. There are three broad variants of fuzzing: black-
box fuzzing [49], whitebox fuzzing or symbolic execution [19, 40,
59], and greybox fuzzing [1, 17, 18, 22, 56, 66]. We first discuss
greybox fuzzing since they are the most widely used in industry
today. In contrast to software model checking, blackbox/greybox
fuzzing techniques represent a random/biased-random search over
the domain of inputs for finding bugs or vulnerabilities in pro-
grams. Most greybox fuzzing techniques are used to detect memory
issues (e.g., buffer overflow and use after free) that can produce
observable behaviors (e.g., crashes). However, LTL-Fuzzer can not
only witness simple properties like memory corruption, but also
detect LTL property violations, for any given LTL property, how-
ever complex. Recent advances in greybox fuzzing use innovative
objective functions for achieving different goals, such as [17] di-
rects the search to specific program locations. The capabilities of
LTL-Fuzzer go beyond visiting specific locations, and LTL-Fuzzer
is used to witness specific event ordering constraints embodied
by the negation of an arbitrary LTL property. PGFUZZ [45] is a
greybox-fuzzing framework to find safety violations for robotic
vehicles, but it is customized to be used on implementations of
robotic vehicles. LTL-Fuzzer can be used to find violation of any
LTL property for software from any application domain.

Symbolic Execution based Validation. Symbolic execution orwhite-
box fuzzing approaches are typically used to find violations of sim-
ple properties such as assertions [19, 34]. Recent whitebox fuzzing
techniques do find violations of certain classes of properties. Schem-
mel’s work [59] checks liveness properties while CHIRON [40]
checks safety properties. [70, 71] proposed regular-property guided
dynamic symbolic execution to find the program paths satisfying
a property. However, all of these approaches require a long time
budget for heavy-weight program analysis and back-end constraint
solving. As a result, these techniques face challenges in scalability.
In contrast, LTL-Fuzzer is built on top of greybox fuzzing; it can
validate arbitrarily large and complex software implementations.

9 PERSPECTIVE

We present LTL-Fuzzer, a linear-time temporal logic guided grey-
box fuzzing technique, which takes Linear-time Temporal Logic
(LTL) properties extracted from informal requirements such as RFCs

and finds violations of these properties in C/C++ software imple-
mentations. Our evaluation shows that LTL-Fuzzer is effective in
finding property violations. It detected 15 LTL property violations
in real world protocol implementations that were previously un-
known; 12 of these zero day bugs have been assigned CVEs. We
make the data-set of LTL properties, and our tool available for
scrutiny.

Our work shows the promise of synergising concepts from tem-
poral property checking with recent advances in greybox fuzzing
(these advances have made greybox fuzzing more systematic and
effective). Specifically, in this paper we have taken concepts from
automata-theoretic model checking of LTL properties [62], while
at the same time adapting/ augmenting directed greybox fuzzing
[17]. The main advancement of greybox fuzzing in our work, is
the ability to find violations of arbitrary LTL properties, which
is achieved by borrowing the Büchi automata construction from
[62]. We note that the real-life practical value addition of software
model checking is often from automated bug-finding in software
implementations rather than from formal verification. Runtime
verification complements software model checking by analyzing
a single execution trace of software implementations. Our work
essentially shows the promise of enjoying the main practical ben-
efits of software model checking more efficiently and effectively
via augmentation of (directed) greybox fuzzing. This is partially
shown by the experiments in this paper where we have compared
our work with both model checkers and fuzzers. Our work is also
complementary to runtime verification since we generate test exe-
cutions guided by a LTL property, while runtime verification would
check a LTL property against a single test execution.

Arguably we could compare LTL-Fuzzerwithmoremodel check-
ers and fuzzers, experimentally. At the same time, we have noted
that many model checkers were found to be not applicable for
checking arbitrary LTL properties of arbitrary C/C++ software im-
plementations. Moreover, the problem addressed by LTL-Fuzzer
is certainly beyond the reach of fuzzers since fuzzers cannot de-
tect temporal property violations. Overall, we believe our work
represents a practical advance over model checkers and runtime
verification, and a conceptual advance over greybox fuzzers. We
expect that the research community will take the work in our pa-
per forward, to further understand the synergies among software
model checking, runtime verification and greybox fuzzing.
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