
Grammar-based Whitebox Fuzzing

Patrice Godefroid

Microsoft Research

pg@microsoft.com

Adam Kiėzun∗

Massachusetts Institute of
Technology

akiezun@mit.edu

Michael Y. Levin

Microsoft Center for Software
Excellence

mlevin@microsoft.com

Abstract
Whitebox fuzzing is a form of automatic dynamic test gen-
eration, based on symbolic execution and constraint solving,
designed for security testing of large applications. However,
the effectiveness of whitebox fuzzing is limited when testing
applications with highly-structured inputs, such as compil-
ers and interpreters. These applications process their inputs
in stages, such as lexing, parsing and evaluation. Due to the
enormous number of control paths in the early processing
stages, whitebox fuzzing rarely reaches parts of the applica-
tion beyond the first stages.

In this paper, we study how to enhance whitebox fuzzing
of complex structured-input applications with a grammar-
based specification of their valid inputs. We present a novel
dynamic test generation algorithm where symbolic execu-
tion directly generates grammar-based constraints whose
satisfiability is checked using a custom grammar-based con-
straint solver. We have implemented this algorithm and eval-
uated it on a large security-critical application, the JavaScript
interpreter of Internet Explorer 7. Results of experiments
show that grammar-based whitebox fuzzing explores deeper
program paths and avoids dead-ends due to non-parsable in-
puts. Compared to regular whitebox fuzzing, grammar-based
whitebox fuzzing increased coverage of the code generation
module of the IE7 JavaScript interpreter from 53% to 81%
while using three times fewer tests.

1. Introduction
Blackbox fuzzingis a form of testing, heavily used for find-
ing security vulnerabilities in software. It simply consists
in randomly modifying well-formed inputs and testing the
resulting variants [13, 3, 12]. Blackbox fuzzing sometimes
usesgrammarsto generate the well-formed inputs, as well
as to encode application-specific knowledge and test heuris-
tics for guiding the generation of input variants [30, 1, 29].

A recently proposed alternative,whitebox fuzzing[16],
combines fuzz testing with dynamic test generation [15, 6].
Whitebox fuzzing executes the program under test with an
initial, well-formed input, both concretely and symbolically.
During the execution of conditional statements, whitebox

∗ The work of this author was done mostly while visiting Microsoft.

1 //Reads and returns next token from file.

2 //Terminates on erroneous inputs.

3 Token nextToken(){

4 ...

5 readInputByte();

6 ...

7 }

8

9 //Parses the input file, returns parse tree.

10 //Terminates on erroneous inputs.

11 ParseTree parse(){

12 ...

13 Token t = nextToken();

14 ...

15 }

16

17 void main(){

18 ...

19 ParseTree t = parse();

20 ...

21 Bytecode code = codeGen(t);

22 ...

23 }

Figure 1. Sketch of an interpreter. The interpreter processes
the inputs in stages: lexer (functionnextToken), parser
(function parse), and code generator (functioncodeGen).
Next, the interpreter executes the generated bytecode (omit-
ted here).

fuzzing creates constraints on program inputs. Those con-
straints capture how the program uses its inputs, and satis-
fying assignments for the negation of each constraint define
new inputs that exercise different control paths. Whitebox
fuzzing repeats this process for the newly created inputs,
to exercise all feasible control paths of the program under
test. In practice, the search is usually incomplete because
the number of feasible control paths may be astronomical
(even infinite) and because the precision of symbolic execu-
tion, constraint generation and solving is inherently limited.
Nevertheless, whitebox fuzzing found new security vulnera-
bilities in several applications [16].

However, the effectiveness of whitebox fuzzing is limited
when testing applications that require highly-structuredin-
puts. Examples of such applications are compilers and inter-
preters. Such applications process the inputs in stages, such
as lexing, parsing and evaluation. Due to the enormous num-
ber of control paths in the early processing stages, whitebox
fuzzing rarely reaches parts of the application beyond the

福昕
高亮

FunDecl F function id (Formals) FunBody
FunBody F { SrcElems}
SrcElems F ǫ

SrcElems F SrcElem SrcElems
Formals F id

Formals F id , Formals
. . .

Figure 2. Fragment of a context-free grammar for
JavaScript. Nonterminals have names starting with upper-
case. Symbolǫ denotes the empty string. The starting non-
terminal is FunDecl.

first stages. For instance, there are many possible sequences
of blank-spaces/tabs/carriage-returns/etc. separating tokens
in most structured languages, each corresponding to a dif-
ferent control path in the lexer. In addition to path explo-
sion, symbolic execution itself may be defeated already in
the first processing stages. For instance, lexers often detect
language keywords by comparing their pre-computed, hard-
coded hash values with the hash values of strings read from
the input; this effectively prevents symbolic execution and
constraint solving from ever generating input strings match-
ing those keywords since hash functions cannot be inversed
(i.e., given a constraintx == hash(y) and a value forx,
one cannot compute a value fory satisfying this constraint).

In this paper, we presentgrammar-based whitebox fuzzing,
which enhances whitebox fuzzing with a grammar-based
specification of valid inputs. Grammar-based whitebox fuzzing
is a dynamic test generation algorithm where symbolic exe-
cution directly generates grammar-based constraints whose
satisfiability is checked using a custom grammar-based con-
straint solver. The algorithm has two key components:

1. Higher-level symbolic constraints, expressed in terms of
symbolic grammar tokens returned by the lexer, instead
of the traditional [15, 6, 16] symbolic bytes read as input.

2. Custom constraint solver that solves constraints on sym-
bolic grammar tokens. The solver looks for solutions
that satisfy the constraintsand are accepted by a given
(context-free) grammar. The grammar represents valid
inputs for the program under test, and thus, by construc-
tion, all solutions found by the solver correspond to valid
inputs.

Assuming the grammar accepts inputs only if they are
parsable, the above algorithm never generates non-parsable
inputs, i.e., it avoids dead-ends in the lexer or parser. More-
over, the grammar-based constraint solver cancompletea
partial set of token constraints into a fully-defined valid in-
put, hence avoiding exploring many possible non-parsable
completions.

As an example, consider the interpreter sketched in Fig-
ure 1 and the (JavaScript) grammar partially defined in Fig-
ure 2. By tracking the tokens returned by the lexer, i.e., the
function nextToken (line 3) in Figure 1, and considering

those as symbolic inputs, our technique generates constraints
in terms of such tokens. For instance, running the interpreter
on the valid input‘‘function f(){ }’’ may correspond
to the sequence of symbolic token constraints (of course, the
precise form of the constraint depends on the actual source
code of the parser, which is omitted from Figure 1) token0

= function; token1 = id; token2 = (; token3 =); token4

= {; token5 = }. Negating the fourth constraint in this path
constraint leads to the new sequence of constraints: token0

= function; token1 = id; token2 = (; token3 ,). There
are many ways to satisfy this constraints but most solutions
lead to non-parsable inputs. In contrast, the grammar-based
constraint solver directly concludes that the only way to sat-
isfy this constraintwhile generating a valid inputaccording
to the grammar is to set token3 = id and to complete the
remainder of the input with, say, token4 =); token5 = {;
token6 = }. The generated input that corresponds to this so-
lution is‘‘function f(id){ }’’, whereid can be any
identifier. Similarly, a grammar-based constraint solver can
immediately prove that negating the third constraint token2

= (in the above path constraint is unsolvable (i.e., there are
no inputs that satisfy this constraint and are recognized by
the grammar). Grammar-based whitebox fuzzing prunes the
entire sub-tree of lexer executions corresponding to all pos-
sible non-parsable inputs matching this case.

By restricting the search space to valid inputs, grammar-
based whitebox fuzzing can exercise deeper paths, and focus
the search on the harder-to-test, deeper processing stages.

We have implemented grammar-based whitebox fuzzing
and evaluated it on a large application, the JavaScript inter-
preter of the Internet Explorer 7 web-browser. Results of ex-
periments show that grammar-based whitebox fuzzing out-
performs whitebox fuzzing, blackbox fuzzing and grammar-
based blackbox fuzzing in overall code coverage, while us-
ing fewer tests.

2. Grammar-based Whitebox Fuzzing
In this section, we describe whitebox fuzzing (Section 2.1)
and introduce grammar-based whitebox fuzzing (Section 2.2).
We then discuss how to check grammar-based constraints for
context-free grammars (Section 2.3). Finally, we discuss ad-
ditional aspects of our approach and some of its limitations
(Section 2.4).

2.1 Whitebox Fuzzing

Algorithm 1 describes whitebox fuzzing [16], an algorithm
for test input generation (the underlined text should be ig-
nored for now.) This algorithm executes a sequential pro-
gram P under test while performing a symbolic execution
that tracks the effect of program inputs on conditional state-
ments. The algorithm associates a symbolic variable with
each byte of program input. The algorithm keeps a symbolic
store that maps program variables to symbolic expressions
composed of symbolic variables and constants. The algo-

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
下划线

福昕
下划线

福昕
下划线

福昕
下划线

福昕
下划线

福昕
高亮

rithm updates the symbolic store whenever the program ma-
nipulates input data (line 4). At every conditional statement
that involves symbolic expressions, the algorithm extends
the current path constraintpc with an additional conjunctc
that represents the branch of the conditional statement taken
in the current (concrete) execution (line 11). Each inputI has
an associated boundI .bound that denotes the depth of the
parent path constraint that createdI (initially 0). If the length
|pc| of the path constraint exceeds the boundI .bound, then
the algorithm creates analternativepath constraintpcalt by
appending thenegationof the conjunctc (line 13) to the path
constraint. Any solutions to this alternative path constraint
(line 14) corresponds to a program input that will drive the
program execution exactly along the same control path until
the branching point where theoppositebranch will be taken
(assuming symbolic execution has perfect precision, other-
wise the actual execution may diverge from this path.) At
the end of the execution, the new test inputs returned by Al-
gorithm 1 are in turn executed, checked for runtime errors,
and themselves expanded using Algorithm 1. The process is
repeated until no new tests can be generated or until a time-
limit expires.

2.2 Grammar-based Whitebox Fuzzing

Grammar-based whitebox fuzzing is an extension of the al-
gorithm in Section 2.1. The underlined text in Algorithm 1
contains the three necessary changes. First, the new algo-
rithm requires a grammarG that describes valid program
inputs. Second, instead of marking the bytes in program in-
puts as symbolic (line 21), grammar-based whitebox fuzzing
marks tokens returned from a tokenizing function such as
nextToken in Figure 1 as symbolic (line 7); thus grammar-
based whitebox fuzzing associates a symbolic variable with
each token, and symbolic execution tracks the influence of
the tokens on the control path taken by the programP. Third
(line 14), the new algorithm uses the grammar to require
that the new input not only satisfies the alternative path con-
straint but is also in the language accepted by the grammar.
As the examples in the introduction illustrate, this additional
requirement gives two advantages to grammar-based white-
box fuzzing: it allows pruning of the search tree correspond-
ing to invalid inputs (i.e., inputs that are not accepted by the
grammar), and it allows the direct completion of satisfiable
token constraints into valid inputs.

2.3 Context-free Constraint Solver

The constraint solver invoked in line 14 of the grammar-
based Algorithm 1 computes language intersection: it checks
whether the language (set)L(pcalt) of inputs satisfying the
alternative path constraintpcalt contains an input that is in
the language accepted by the grammar. By construction,
the languageL(pcalt) is always regular, as we show later
in this section. If the grammarG is context-free, then lan-
guage intersection withL(pcalt) is decidable. IfG is context-
sensitive, then a sound and complete decision procedure for

input : ProgramP, input I , grammarG
output: New inputs, each for a different path inP
path constraintpc≔ true;1

results≔ ∅;2

foreachexecuted instruction instdo3

update the symbolic store;4

switch inst do5

casereturn from tokenizing function6

mark return token as symbolic;7

end8

caseinput-dependent conditional statement9

c≔ expression for the executed branch;10

pc≔ pc∧ c;11

if |pc| >I.boundthen12

pcalt ≔ pc∧ ¬c;13

s≔ Solve(L(pcalt)∩ L(G));14

s.bound≔ |pcalt |;15

results≔ results∪ {s};16

end17

end18

otherwise19

if inst is input reading∧ falsethen20

mark input as symbolic;21

end22

end23

end24

end25

return results26

Algorithm 1 : Grammar-based Whitebox fuzzing. Changes
for grammar-based fuzzing are underlined.

computing language intersection may not exist (but approx-
imations are possible). In what follows, we assume thatG is
context-free.

We assume that the setT of tokens that can be returned
by the tokenization function is finite. Therefore, all token
variables tokeni have a finite rangeT , and satisfiability of
any constraint on a finite set of token variables is decidable.
Given any such constraintpcalt, one can sort its set of to-
ken variables tokeni by their index i, representing the total
order by which they have been created by the tokenization
function, and build a regular expression (language)R repre-
sentingL(pcalt) for that constraintpcalt.

A context-free constraint solvertakes as inputs a context-
free grammarG and a regular expressionR, and returns ei-
ther a strings ∈ L(G) ∩ L(R), or ‘EMPTY’, if the intersec-
tion is empty. The following procedure solves this problem
in polynomial time:

1. convertG to a Push-Down Automaton (PDA),

2. convertR to a Finite-State Automaton (FSA),

3. compute the product PDA of the PDA and FSA,

福昕
高亮

福昕
下划线

福昕
下划线

福昕
高亮

福昕
下划线

福昕
高亮

福昕
高亮

福昕
高亮

福昕
下划线

福昕
高亮

福昕
下划线

福昕
高亮

福昕
高亮

福昕
下划线

福昕
高亮

input : context-free grammarG, grammar constraintR
output: s from L(G) ∩ L(R), or EMPTYif

L(G) ∩ L(R) = ∅
G′F duplicate productions for starting nonterminalS1

in G;
G′F renameS to S′ in G′ (but not in the duplicated2

productions);
nF highest indexi of tokeni variable inR;3

for i = 0 . . . n do4

let constraintc ∈ R≡ tokeni ∈ T;5

worklist WF productions forS;6

while W not emptydo7

pF production fromW;8

if ith element in p is nonterminal Nthen9

add copies ofp to W, with ith element10

expanded using all productions forN;
else11

removep from W if ith element inp is not12

in T (i.e., violates constraint);
end13

end14

end15

if L(G′) = ∅ then16

return EMPTY17

else18

return generate s from G′19

end20

Algorithm 2 : A simple context-free constraint solver.

4. check emptiness of the language accepted by the result-
ing PDA,

5. if non-empty, generate any string in that language, other-
wise return ’EMPTY’.

Algorithm 2 is a simpler algorithm that we have imple-
mented and used in our experiments. Given a context-free
grammar and a regular expression, this algorithm computes
a grammar representing exactly the strings in the intersection
of both languages. This algorithm is simpler because it does
not go through an explicit PDA translation and because it
exploits the fact that, by construction, any regular language
R always constrains only the firstn tokens returned by the
tokenization function, wheren is the highest indexi of a to-
ken variable tokeni appearing in the constraint represented
by R. After theith iteration of thefor loop of the algorithm
(line 4), the intermediate grammar satisfies prefixes 0. . . i
of the grammar constraints, because step 12 in Algorithm 2
removes the productions that violate theith constraint. This
simpler algorithm is not polynomial in general, but works
well in practice for small values ofn. Also, if the gram-
mar is left-recursive, Algorithm 2 may not terminate. How-
ever, context-free grammars for file formats and program-

S F (let ((id S)) S)
S F (Op S S)
S F num
S F id
Op F +

Op F −

Figure 3. Context-free grammar for simplified s-
expressions. Figure 4 uses this grammar to illustrate
Algorithm 2.

ming languages are rarely left-recursive, and left-recursion
can be efficiently removed [26].

Figure 4 illustrates the algorithm on the example gram-
mar from Figure 3. Starting with the initial grammar, the
algorithm unrolls and prunes productions according to the
grammar constraint. The left-most column shows the gram-
mar after line 2 in the algorithm. Next, the main iteration be-
gins. The first conjunct in the grammar constraint is “token0

= (” , therefore the algorithm (step 12) removes the last two
productions from the grammar. The second column show the
result of this step. Next, the algorithm examines the second
conjunct in the grammar constraint, ‘token1 = +”). The al-
gorithm (step 10) expands the nonterminalOp in the pro-
ductionSF (Op S′ S′). The production is replaced by two
productions,S F (+ S′ S′) andS F (− S′ S′), which are
added to the worklistW. In the next iteration of thewhile
loop, the second of the new productions is removed from
the grammar (line 12) because it violates the grammar con-
straint. The third column in Figure 4 shows the grammar
after this step. After 2 more iterations of thefor loop, the
algorithm arrives at the final grammar (right-most column).

The last step (line 19) of the algorithm generates a string
s from the grammarG′ for the intersection ofG and R.
For speed, our implementation uses a bottom-up strategy
that generates a string with the lowest derivation tree for
each nonterminal in the grammar, by combining the strings
from the right-hand sides of productions for the nonterminal.
This strategy is fast due to memoizing strings during string
generation. Alternative generation strategies are possible,
e.g., random generation (which we experimented with but
gave inferior results). For the example grammar in the right-
most column in Figure 4, the bottom-up strategy generates
the string: “(+ (let ((id num)) num) num)”. From this string
of tokens, our tool generates a matching string of input
bytes by applying an application-specific de-tokenization
function.

2.4 Discussion and Limitations

Approximate grammars. Grammar-based whitebox fuzzing
can be used with approximate grammars. If the grammar ac-
cepts all parsable inputs, i.e., over-approximates the setof
parsable inputs, then Algorithm 1 is sound: it does not prune
any of the feasible paths for which the parser successfully
terminates.

福昕
下划线

福昕
高亮

福昕
下划线

福昕
高亮

福昕
高亮

i = 0 i = 1 i = 2 i = 3 final
S′ F (let ((id S′)) S′) → → → →

S′ F (Op S′ S′) → → → →

S′ F num → → → →

S′ F id → → → →

OpF + → → → →

OpF − → → → →

SF (let ((id S′)) S′) → SF (+ S′ S′) SF (+ (let ((id S′)) S′) S′) SF (+ (let ((id S′)) S′) S′)
SF (Op S′ S′) → SF (+ (Op S′ S′) S′)
SF num
SF id

Figure 4. Example illustrating Algorithm 2 on the grammar in Figure 3 and the regular grammar constraint: token0 = (;
token1 = + ; token2 = (; token3 = (,),num,id,let ; Symbols→ indicate that the production is unchanged from previous step.
Consecutive columns show the grammar at the top of thefor loop at line 4 in Algorithm 2. The last column shows the final
grammar.

In practice, the set of valid inputs specified by a grammar
is bound to be some approximation of the set of “parsable”
inputs. Indeed, parsers typically implement additional vali-
dation (e.g., simple type-checking) that is not part of a typ-
ical grammar description of the language. Other grammars
may have some “context-sensitive behaviors” (as in proto-
col description languages where a variable size parameterk
is followed byk records), that are omitted or approximated
in a context-free or regular manner. Other grammars, espe-
cially for network protocols, are simplified representations
of valid inputs, and do not require the full power of context-
sensitivity [28, 4, 9].

Domain knowledge.Grammar-based whitebox fuzzing
requires a limited amount of domain knowledge, namely
the formal grammar, identifying the tokenizing function, and
providing the de-tokenization function. We believe this isnot
a severe practical limitation. Indeed, grammars are typically
available for programming languages, and identifying the
token-returning function is, in our experience, rather easy,
even in unknown code, provided that the source code is
available or the appropriate functions had standard names,
such astoken, nextToken, scan, etc. For instance, we
found the tokenization function in the JavaScript interpreter
of Internet Explorer 7 in a matter of minutes, by looking for
commonly used names in the symbol table.

Lexer and parser bugs.Using a grammar to filter out
invalid inputs may reduce coverage of the lexer and parser
themselves, since the grammar explicitly prevents the exe-
cution of code-paths handling invalid inputs in those stages.
For testing those stages, traditional whitebox fuzzing can
be used. Moreover, our experiments indicate that grammar-
based whitebox fuzzing does not decrease coverage in the
lexer or parser.

Our approach uses the actual lexer and parser code of the
program under test—removing these layers and using au-
tomatically generated software stubs simulating those parts
may feed unrealistic inputs to the rest of the program.

3. Evaluation
We evaluate our approach experimentally and design exper-
iments with the following goals:

• Compare grammar-based whitebox fuzzing to other ap-
proaches, grammar-lessas well asblackbox. We compare
how the various test generation strategies perform with a
limited time budget and also examine their behavior over
long periods of time (Section 3.5.1).

• Measure whether test inputs generated by our technique
are effective in deeply penetrating the application, i.e.,
reaching beyond the lexer and parser. Section 3.5.1 gives
the relevant experimental results.

• Measure how the set of inputs generated by each tech-
nique compares. In particular, do inputs generated by
grammar-based whitebox fuzzing exercise the program in
ways that other techniques do not? Section 3.5.2 presents
the results.

• Measure the effectiveness of token-level constraints in
preventing path explosion in the lexer. See Section 3.5.3
for the results.

• Measure the performance of the grammar constraint
solver (Section 2.3) with respect to the size of test in-
puts. Section 3.5.4 discusses this point.

• Measure the effectiveness of the grammar-based ap-
proach in pruning the search tree. See Section 3.5.5.

The rest of this section describes our experiments and dis-
cusses the results. Naturally, because they come from a lim-
ited sample, these experimental results need to be taken with
caution. However, our evaluation is extensive and performed
with a large, widely-used JavaScript interpreter, a represen-
tative “real-world” program.

3.1 Subject Program

We performed the experiments with the JavaScript inter-
preter embedded in Internet Explorer 7. Our experimental
setup runs the interpreter with no source modifications. The
total size of the JavaScript interpreter is 113562 machine in-

福昕
下划线

福昕
下划线

strategy seed random tokens
inputs

blackbox X X

grammar-based blackbox X X

whitebox X

whitebox+tokens X X

grammar-based whitebox X X

Figure 5. Test input generation strategies evaluated and
their characteristics. Theseed inputs column indicates
which strategies require initial seed inputs from which to
generate new inputs. Therandom column indicates which
strategies use randomness. Thetokens column indicates
which strategies use the lexical specification (i.e., tokens) of
the input language. Each technique’s name indicates whether
the technique uses a grammar and whether is it white- or
blackbox.

structions. In our experiments, we focus on the lexer, parser
and code generator modules of the interpreter. Their respec-
tive sizes are 10410, 18535 and 3693 instructions. The code
generator is the “deepest” of the examined modules, i.e., ev-
ery input that reaches the code generator also reaches the
other two modules (and not vice versa). The lexer and parser
are equally deep—the parser always calls the lexer.

We use the official JavaScript grammar1. The grammar is
quite large: 189 productions, 82 terminals (tokens), and 102
nonterminals.

3.2 Generation Strategies

We evaluate the following test input generation strategies, to
compare them to grammar-based whitebox fuzzing.

blackbox generates test inputs by randomly modifying an
initial input.

blackbox grammar generates test inputs by creating ran-
dom strings from a given grammar. We use a strategy
that generates strings of a given length uniformly at ran-
dom [24], i.e., each string of a given length is equally
likely.

whitebox generates test inputs using the whitebox fuzzing
algorithm of Section 2.1.

whitebox+tokens enhances whitebox generation with the
lexical part of the grammar, i.e., marks token identifiers
as symbolic, instead of individual input bytes.

grammar-based whitebox is the grammar-based whitebox
fuzzing algorithm of Section 2—it enhances whitebox
fuzzing both with tokens and with the grammar.

Figure 5 tabulates the strategies we used in the evalua-
tion and shows their characteristics. Other strategies arecon-
ceivable. For example, whitebox fuzzing could be used di-
rectly with the grammar, without tokens. Doing so requires
transforming the grammar into a scannerless grammar [32].

1http://www.ecma-international.org

Another possible strategy is bounded exhaustive enumera-
tion [35, 21]. We have not included the latter in our eval-
uation because, while all other strategies we evaluated are
time-bounded (i.e., can be stopped at any time), exhaustive
enumeration loses its meaning if it is terminated before com-
pletion, which makes it harder to fairly compare to time-
bounded techniques.

3.3 Methodology

To avoid bias stemming from using arbitrary inputs, for
techniques that require seed inputs (see Figure 5), we use 50
inputs of lengths 15–20 tokens generated randomly from
the grammar. Section 3.4 provides more information about
selecting the size of seeds inputs. To avoid any bias, we run
all experiments inside the same test harness.

The whitebox+tokens and grammar-based whitebox
strategies require specifying the function that is the source
of tokens. Our framework allows doing so in a simple way,
by overriding a single function.

For each of the examined modules (lexer, parser and
code generator), we measure the reachability rate, i.e., the
percentage of inputs that execute at least one instruction of
the module. Deeper modules always have lower reachability
rates.

We measure instruction coverage, i.e., the ratio of the
number of unique, executed instructions to all instructions
in the module of interest. This coverage metric is the most
suitable for our needs—we want to estimate the bug-finding
potential of the generated inputs, and blocks with more in-
structions are more likely to contain bugs than short blocks.
In addition to the total coverage for the interpreter, we mea-
sure coverage in the lexer, parser and code generator mod-
ules.

We run each generation strategy for 2 hours. The 2-hour
time includesall experimental tasks: program execution,
symbolic execution (where applicable), constraint solving
(where applicable), generation of new inputs and coverage
measurements (To see whether giving more time changes
the results, we also let each strategy run for much longer,
until instruction coverage does not increase for 10 hours. See
Section 3.5.1.)

For reference, we also include coverage data and reach-
ability results obtained with a “manual” test suite, cre-
ated over many years by the developers and testers of this
JavaScript interpreter. The suite consists of more than 2800
hand-crafted inputs that exercise the interpreter thoroughly.

3.4 Seed Size Selection

Four of our generation strategies require seed inputs (Fig-
ure 5). To avoid bias stemming from using arbitrary inputs,
we use inputs generated randomly from the JavaScript gram-
mar. The length of the seed inputs may influence subsequent
generation. To select the right length, we generate inputs of
different sizes and measure the coverage achieved by each of
those inputs as well as what percentage of inputs reaches the

size reach average maximum
(tokens) code gen. % coverage % coverage %

6 100 8.5 8.5
10 76.0 8.2 9.2
20 67.0 8.3 9.7
30 38.0 7.5 9.8
50 9.0 6.5 10.1
100 1.0 6.3 10.4
120 0.0 6.2 6.8
150 0.0 6.2 6.7
200 0.0 6.2 6.7

Figure 6. Coverage statistics for nine sets of 100 inputs
each, generated randomly from the JavaScript grammar (us-
ing the same uniform generator asgrammar-based black-
box.) The reach code gen.column displays the percentage
of the generated inputs that reach the code generator mod-
ule. The two right-most columns display the average and the
maximum coverage (of the whole interpreter) for the gener-
ated inputs.

code generator. For each length, we generate 100 inputs and
perform the measurements only for those inputs. Figure 6
presents the results.

The findings are not immediately intuitive—longer inputs
achieve, on average, lower total coverage. The reason is that
the official JavaScript grammar is only a partial specifica-
tion of what constitutes syntactic validity. The grammar de-
scribes an over-approximation of the set of inputs accept-
able by the parser (longer, randomly generated, inputs are
more likely to be accepted by the grammar andrejectedby
the parser.) For example, the grammar specifies thatbreak

statements may occur anywhere in the function body, while
the parser enforces thatbreak statements may appear only
in loops andswitch statements. Enforcing this is possible
by modifying the grammar but it would make the grammar
much larger. Another example of over-approximation con-
cerns line breaks and semicolons. The standard specifies that
certain semicolons may be omitted, as long as the are appro-
priate line breaks in the file2. However, the grammar does not
enforce this requirement and allows omitting all semicolons.

By analyzing the results, we select 15–20 as the size
range, in tokens, of the seeds we use in other experiments.
This length makes the seed inputs variable without sacrific-
ing the penetration rate (i.e., reachability of the code gener-
ation module).

3.5 Results

3.5.1 Coverage and Penetration

Figure 7 tabulates the coverage and reachability results
for the 2-hour runs.Grammar-based whitebox fuzzing
achieves results that are closest to the manual suite (which,
predictably, performed best). In particular, it achieves no-

2 Section 7.9 of the specification:http://interglacial.com/
javascript spec/a-7.html#a-7.9

ticeably better coverage thanwhitebox. Of all examined
strategies,grammar-based whiteboxachieves the best total
coverage as well as the best coverage in the deepest exam-
ined module, the code generator.

Grammar-based whitebox fuzzing performs also sig-
nificantly better thangrammar-based blackbox. Even
though the latter strategy achieved good coverage in the code
generator, whitebox strategies outperform blackbox ones in
total coverage.

Moreover,grammar-based whitebox fuzzing achieves
the highest coverage using the fewest inputs, which means
that this strategy generates inputs of higher quality. Generat-
ing few, high-quality test inputs is important for regression
testing.

Theblackbox andwhitebox techniques achieved similar
results in all categories. This shows that, when testing ap-
plications with highly-structured inputs, whitebox fuzzing,
with the power of dynamic analysis and symbolic execu-
tion, does not improve much over simple blackbox fuzzing.
In fact, in the code generator, those grammar-lessstrategies
do not improve coverage much above the initial set of seed
inputs.

Reachability results show that almost all tested inputs
reach the lexer. A few inputs generated by theblackbox
and whitebox strategies contains invalid, e.g., non-ASCII,
characters and the interpreter rejects them before using the
lexer. To exercise the interpreter well, inputs must reach the
deepest module, the code generator. The results show that
grammar-based whitebox has the highest percentage of
such deep-penetrating inputs.

To analyze the long generation-time behavior of the ex-
amined strategies, we let each strategy run for as long as
it keeps covering new instructions at least every 10 hours.
The results are that, after the initial 2 hours, each configu-
ration reaches around 90% of coverage that it is eventually
capable of reaching (this validates our selection of the 2-
hour time limit for our experiments.) The long generation-
time runs confirm the findings of the 2-hour runs.grammar-
based whiteboxfuzzing is the most effective of the exam-
ined techniques—it reaches the highest coverage and cov-
ers new code for longer than other techniques (97 hours
vs. 84 hours forwhitebox and 82 hours forgrammar-based
blackbox).

The results of the presented experiments validate our
claim that grammar-based whitebox fuzzing is effective in
penetrating the tested application more deeply and exercis-
ing the code more thoroughly than other techniques.

3.5.2 Relative Coverage

Figure 8 compares the instructions covered withgrammar-
based whiteboxfuzzing and the other analyzed strategies.
From theonly s and thegbw columns for each strategy, we
observe that inputs generated bygrammar-based whitebox
cover a larger number of unique instructions (forgrammar-
based blackbox, significantly so). Since (Section 3.5.1)

strategy inputs total lexer parser code generator
coverage % reach % coverage % reach % coverage % reach % coverage %

blackbox 8658 14.2 99.6 24.6 99.6 24.8 17.6 52.1
grammar-based blackbox 7837 11.9 100 22.1 100 24.1 72.2 61.2
whitebox 6883 14.7 99.2 25.8 99.2 28.8 16.5 53.5
whitebox+tokens 3086 16.4 100 35.4 100 39.2 15.5 53.0
grammar-based whitebox 2378 20.0 100 24.8 100 42.4 80.7 81.5
seed inputs 50 10.6 100 18.4 100 20.6 66.0 50.9
manual suite 2820 58.8 100 62.1 100 76.4 100 91.6

Figure 7. Coverage results for 2-hour runs. Manual test suite takes more than 2 hours to run and is included here for reference.
Theseed inputsrow lists statistics for the seed inputs used by the generation strategies (see Figure 5). Theinputs column gives
the number of inputs tested by each strategy (i.e., those generated inputs for which our harness computes coverage information
during the 2-hour time limit). Thetotal coveragecolumn gives the total instruction coverage percentage. Coverage statistics
for lexer, parser and code generator modules are given in thecorresponding columns. Thereach columns give the percentage
of inputs that reach the module’s entry-point. Thecoveragecolumns give the instruction coverage for the module.

strategy s only s s and gbw only gbw
blackbox 1176 14931 7747
grammar-based blackbox 507 13036 9642
whitebox 1761 14978 7700
whitebox+tokens 2782 15789 6889

Figure 8. Relative coverage compared togrammar-based
whitebox (gbw). The column “only s” gives the total num-
ber of instructions covered by each strategy butnot by gbw.
The column “s and gbw” gives the total number of instruc-
tions covered by both strategies. The last column gives the
total of instructions covered by “onlygbw”,

grammar-based whiteboxfuzzing achieves the highest to-
tal coverage, highest reachability rate and coverage in the
deepest module while using the smallest number of inputs,
it creates tests inputs of the highest quality among the ana-
lyzed strategies.

3.5.3 Symbolic Executions

Figure 9 presents statistics for symbolic executions. The
whitebox strategy creates most symbolic variables because
it operates on characters, while the other two strategies work
on tokens (cf. Figure 5). Thewhitebox+tokensstrategy cre-
ates the fewest symbolic variables per execution. This is be-
causewhitebox+tokens generates many unparsable inputs
(cf. Figure 7), which the parser rejects early and thereforeno
symbolic variables are created for the tokens after the parse
error.

Figure 9 shows how constraint creation is distributed
among the lexer, parser and code generator modules of
the JavaScript interpreter. The two token-based strategies
(whitebox+tokens andgrammar-based whitebox) gener-
ate no constraints in the lexer. This helps to avoid path ex-
plosion in that module. Those strategies do explore the lexer
(indeed, Figure 7 shows high coverage) but they do not get
lost in the error paths.

All strategies create constraints in the deepest, code gen-
erator, module. However, there are few such constraints be-

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

%
 ti

m
e

in
 s

ol
ve

r

seed file size (tokens)

% time in grammar solver

Figure 10. Grammar solver performance. The% time in
solver line indicates what percentage of total 2-hour run time
was spent in the grammar constraint solver.

cause the parser transforms the stream of tokens into an Ab-
stract Syntax Tree (AST) and subsequent code operates on
the AST. When processing the AST in later stages, sym-
bolic variables associated with bytes or tokens are absent
(also partially due to the incompleteness of the constraint
theory), so symbolic execution does not create constraints
for branches in these stages.

3.5.4 Grammar Solver Performance

To measure the performance of the grammar constraint
solver, we repeated the 2-hourgrammar-based whitebox
run 9 times with different sizes of seed inputs (between 10
and 200 tokens). The average number of solver calls per
symbolic execution was between 23 and 53 (with no vis-
ible relationship between seed input size and the number
of calls). Figure 10 shows how much of the total execution
time was spent in the constraint solver. The results present
no obvious correlation between seed size and solving time.

strategy created constraints % symbolic average average
lexer parser code gen. executions symbolic variables constraints

whitebox 66.6 33.1 0.3 131 57.1 297.7
whitebox+tokens 0.0 98.0 2.0 170 11.8 66.9
grammar-based whitebox 0.0 98.0 2.0 143 21.1 113.0

Figure 9. Constraint creation statistics for 2-hour runs of whiteboxstrategies. Thecreated constraintscolumns shows the
percentages of all symbolic constraints created in the three analyzed modules of the JavaScript interpreter. Thesymbolic
executionscolumn gives the total number of symbolic executions duringeach run. The two right-most columns give the
average number of symbolic variables per symbolic execution and the average number of symbolic constraints per symbolic
execution.

3.5.5 Grammar-based Search Tree Pruning

Grammar-based whitebox fuzzing is effective in pruning the
search tree. In our experiments, 29.0% of grammar con-
straints are unsatisfiable. When a grammar constraint is un-
satisfiable, the corresponding search tree is pruned because
there is no input that satisfies the constraint and is valid ac-
cording to the grammar.

4. Related Work
Automated approaches to systematic testing based on dy-
namic test generation, such as DART [15], CUTE [33],
EXE [6] and SAGE [16] are popular because they find
bugs without generating false alarms and require no domain
knowledge. Our work enhances dynamic test generation by
taking advantage of a formal grammar representing valid in-
puts, thus helping the generation of test inputs that penetrate
the application deeper.

Miller’s pioneering fuzzing tool [25] generated streams
of random bytes, but most popular fuzzers today support
some form of grammar representation, e.g., SPIKE [1],
Peach [29], FileFuzz [12], Autodafé [2]. Work on grammar-
based test input generation started in the 1970’s [17, 31]
and can be broadly divided into random [34, 23, 22, 8]
and exhaustive generation, e.g., [19, 21]. Imperative gen-
eration [7, 27, 10] is a related approach in which a custom-
made program generates the inputs (in effect, the program
encodes the grammar). In systematic approaches, test in-
puts are created from a specification, given either a spe-
cial piece of code (e.g., Korat [5]) or a logic formula (e.g.,
TestEra [18]). Grammar-based test input generation is an
example of model-based testing (see Uttinget al. for a
survey [36]), which focuses on covering the specification
(model) when generating test inputs to check conformance
of the program with respect to the model. Our work also uses
formal grammars as specifications. However, in contrast to
those blackbox approaches, our approach analyses the code
of the program under test.

Path explosion in systematic dynamic test generation can
be alleviated by performing test generation composition-
ally [14], by testing functions systematically in isolation, en-
coding and memoizing test results as function summaries
using function input preconditions and output postcondi-

tions, and re-using such summaries when testing higher-
level functions. A grammar can be viewed as a special form
of user-provided compact “summary” for the entire lexer/-
parser, that may include over-approximations. Computing
such a finite-size summary automatically may be impos-
sible due to the presence of infinitely many paths or lim-
ited symbolic reasoning capability when analyzing the lex-
er/parser. Grammar-based whitebox fuzzing and test sum-
maries are complementary techniques and could be used si-
multaneously.

Another approach to path explosion consists of abstract-
ing lower-level functions using software stubs, marking their
return values as symbolic, and then refining these abstrac-
tions to eliminate unfeasible program paths [20]. In con-
trast, grammar-based whitebox fuzzing is always grounded
in concrete executions, and thus does not require the expen-
sive step of removing unfeasible paths.

Emmi et al. [11] extend systematic testing with con-
straints that describe the state of the data for database appli-
cations. Our approach also solves path and data constraints
simultaneously, but ours is designed for compilers and inter-
preters instead of database applications.

Majumdar and Xu’s recent and independent work [21] is
closest to ours. The authors combine grammar-based black-
box fuzzing with dynamic test generation by exhaustively
pre-generating strings from the grammar (up to a given
length), and then performing dynamic test generation start-
ing from those pre-generated strings, treating only variable
names, number literals etc. as symbolic. Exhaustive gener-
ation inhibits scalability of this approach beyond very short
inputs. Also, the exhaustive grammar-based generation and
the whitebox dynamic test generation parts do not interact
with each other in Majumdar and Xu’s framework. In con-
trast, our grammar-based whitebox fuzzing approach is more
elaborate and powerful as it exploits the grammar for solving
constraints generated during symbolic execution to generate
input variants that are guaranteed to be valid.

5. Conclusion
We introduced grammar-based whitebox fuzzing to signifi-
cantly enhance the effectiveness of dynamic test input gen-
eration for applications with complex, highly-structuredin-
puts, such as interpreters and compilers. Grammar-based

whitebox fuzzing tightly integrates constraint-based white-
box with grammar-based blackbox testing, and leverages
their strengths.

As shown by our in-depth study with the IE7 JavaScript
interpreter, grammar-based whitebox fuzzing generates higher-
quality tests that exercise more code in the deeper, harder-to-
test layers of the application under test (see Figure 7). In our
experiments, it strongly outperformed traditional grammar-
less whitebox fuzzing, the latter not being any better than
random bit flipping done with blackbox fuzzing.

Since grammars are bound to be partial specifications of
valid inputs, grammar-based blackbox approaches are fun-
damentally limited. Thanks to whitebox dynamic test gener-
ation, some of this incompleteness can be recovered, which
explains why grammar-based whitebox fuzzing also out-
performed grammar-based blackbox fuzzing in our experi-
ments.

References
[1] D. Aitel. The Advantages of Block-Based Protocol Analysis

for Security Testing.Immunity Inc., February, 2002.

[2] Autodaf́e. http://autodafe.sourceforge.net.

[3] D. Bird and C. Munoz. Automatic Generation of Random
Self-Checking Test Cases.IBM Systems Journal, 22(3):229–
245, 1983.

[4] N. Borisov, D. Brumley, H. Wang, J. Dunagan, P. Joshi, and
C. Guo. Generic application-level protocol analyzer and its
language. InNDSS, 2007.

[5] C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated
testing based on Java predicates.ISSTA, 2002.

[6] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. Engler.
EXE: automatically generating inputs of death. InCCS, 2006.

[7] K. Claessen and J. Hughes. QuickCheck: A lightweight tool
for random testing of Haskell programs. InICFP, 2000.

[8] D. Coppit and J. Lian. yagg: an easy-to-use generator for
structured test inputs.ASE, 2005.

[9] W. Cui, J. Kannan, and H. J. Wang. Discoverer: Automatic
protocol reverse engineering from network traces. InUSENIX
Security Symposium, 2007.

[10] B. Daniel, D. Dig, K. Garcia, and D. Marinov. Automated
testing of refactoring engines. InFSE, 2007.

[11] M. Emmi, R. Majumdar, and K. Sen. Dynamic test input
generation for database applications. InISSTA, 2007.

[12] Filefuzz. http://labs.idefense.com/software/fuzzing.php.

[13] J. E. Forrester and B. P. Miller. An Empirical Study of the
Robustness of Windows NT Applications Using Random
Testing. InProceedings of the 4th USENIX Windows System
Symposium, Seattle, August 2000.

[14] P. Godefroid. Compositional Dynamic Test Generation. In
POPL, 2007.

[15] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
automated random testing. InPLDI, 2005.

[16] P. Godefroid, M. Levin, and D. Molnar. Automated whitebox
fuzz testing. Technical Report MS-TR-2007-58, Microsoft,
2007.

[17] K. Hanford. Automatic Generation of Test Cases.IBM
Systems Journal, 9(4), 1970.

[18] S. Khurshid and D. Marinov. TestEra: Specification-Based
Testing of Java Programs Using SAT.ASE, 11(4), 2004.

[19] R. Lämmel and W. Schulte. Controllable combinatorial
coverage in grammar-based testing.TestCom, 2006.

[20] R. Majumdar and K. Sen. LATEST: Lazy dynamic test input
generation. Technical Report UCB/EECS-2007-36, EECS
Department, University of California, Berkeley, 2007.

[21] R. Majumdar and R.-G. Xu. Directed test generation using
symbolic grammars. InASE, 2007.

[22] B. Malloy and J. Power. An interpretation of Purdom’s
algorithm for automatic generation of test cases.1st Annual
International Conference on Computer and Information
Science, 2001.

[23] P. Maurer. Generating test data with enhanced context-free
grammars.IEEE Software, 7(4), 1990.

[24] B. McKenzie. Generating strings at random from a context
free grammar. Technical Report TR-COSC 10/97, Depart-
ment of Computer Science, University of Canterbury, 1997.

[25] B. P. Miller, L. Fredriksen, and B. So. An empirical study
of the reliability of UNIX utilities. Communications of the
ACM, 33(12), 1990.

[26] R. C. Moore. Removing left recursion from context-free
grammars. InProceedings of the first conference on North
American chapter of the Association for Computational
Linguistics, 2000.

[27] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-
directed random test generation. InICSE, 2007.

[28] R. Pang, V. Paxson, R. Sommer, and L. Peterson. binpac: a
yacc for writing application protocol parsers.Proceedings of
the 6th ACM SIGCOMM on Internet measurement, 2006.

[29] Peach. http://peachfuzz.sourceforge.net/.

[30] PROTOS: security testing of protocol implementations.
http://www.ee.oulu.fi/research/ouspg/protos/.

[31] P. Purdom. A sentence generator for testing parsers.BIT
Numerical Mathematics, 12(3), 1972.

[32] D. J. Salomon and G. V. Cormack. Scannerless NSLR(1)
parsing of programming languages. InPLDI, 1989.

[33] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit
testing engine for C.ACM SIGSOFT Software Engineering
Notes, 30(5), 2005.

[34] E. Sirer and B. Bershad. Using production grammars in
software testing. Proceedings of the 2nd conference on
Domain-specific languages, 1999.

[35] K. Sullivan, J. Yang, D. Coppit, S. Khurshid, and D. Jackson.
Software assurance by bounded exhaustive testing. InISSTA,
2004.

[36] M. Utting, A. Pretschner, and B. Legeard. A Taxonomy of
Model-Based Testing.Department of Computer Science, The
University of Waikato, New Zealand, Tech. Rep, 4, 2006.

