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ABSTRACT

Kernel vulnerabilities are critical in security because they naturally
allow attackers to gain unprivileged root access. Although there has
been much research on finding kernel vulnerabilities from source
code, there are relatively few research on kernel fuzzing, which is
a practical bug finding technique that does not require any source
code. Existing kernel fuzzing techniques involve feeding in random
input values to kernel API functions. However, such a simple ap-
proach does not reveal latent bugs deep in the kernel code, because
many API functions are dependent on each other, and they can
quickly reject arbitrary parameter values based on their calling
context. In this paper, we propose a novel fuzzing technique for
commodity OS kernels that leverages inferred dependence model
between API function calls to discover deep kernel bugs. We im-
plement our technique on a fuzzing system, called IMF. IMF has
already found 32 previously unknown kernel vulnerabilities on the
latest macOS version 10.12.3 (16D32) at the time of this writing.
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1 INTRODUCTION

Kernel vulnerabilities are recently gaining significant levels of at-
tention. According to the National Vulnerability Database, there
were 248 kernel vulnerabilities reported in 2015, but the number
doubled in 2016 to 478. Furthermore, the attack surface of modern
OS kernels is expanding as their codebase sizes rapidly increase [32].
For instance, a recent report [14] indicates that the Linux kernel is
accepting 4K lines of new code every day. Recent advances in kernel
exploitation [23, 28, 58] have also been highlighting the popularity
of kernel vulnerabilities.

Although there has been much research on discovering kernel
vulnerabilities, most of the advances involve source code auditing,
and therefore, not applicable to commodity OSes such as Windows
or macOS. KLEE [7] symbolically executes the source code to find
vulnerabilities, and it has been used to check the HiStar [61] kernel.
There are static analyzers such as CQUAL [24] and KINT [54], the
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aim of which is to find kernel vulnerabilities. There are also kernel-
level formal verification approaches [29, 30], but all such techniques
require the source code.

The current best practice for finding kernel vulnerabilities on
commodity OSes is fuzzing, which involves repeatedly calling an
arbitrary sequence of kernel API functions, e.g., system calls, with
randomly generated parameter values. There are various kernel
fuzzers developed by security experts and practitioners [4, 25, 37,
40, 53, 57] as well as academic researchers [17, 19, 55], but all of
them share the same idea: they call random kernel API functions
with randomly generated parameter values.

Unfortunately, all of the existing kernel fuzzers are associated
with a high failure rate in terms of how many API functions can be
executed without an error. API function calls fail when given an
invalid calling context. For example, a call to write will always fail
if there is no prior call to open. Furthermore, an open call should
return a valid file descriptor with the write permission, and awrite
call should take in the returned file descriptor as the first argument
in order to be successful. Without considering such cases, it is
unlikely that one will find bugs that are latent deep in the kernel.

The same problem arises in userland fuzzing. Suppose we are
fuzzing a program that takes in a PNG file as input. One can feed
in randomly generated files to the program, but the program will
quickly reject the files because they do not follow the specifications
of the PNG format. Therefore, we need to provide randomly mutated
yet well-structured inputs in order to find deep bugs in the program
under test. We can easily draw an analogy between a sequence of
kernel API calls and a sequence of input fields of an input file. The
key challenge with regard to kernel fuzzing is that (1) the ordering
of kernel API calls should appear to be valid, and (2) the parameters
of API calls should have random yet well-formed values that follow
the API specification.

To address this challenge, we propose a model-based approach to
kernel fuzzing. The idea of model-based fuzzing is not new. Many
userland fuzzers [2, 16, 20, 27, 62] indeed use an input model for
generating test cases. However, automatically generating such a
model for fuzzing is an active research area [12, 18], and has never
been applied to kernel fuzzing. This paper presents the first model-
based kernel fuzzer that leverages an automatic model inference
technique. Specifically, we analyze kernel API call sequences ob-
tained from running a regular program to deduce an API model. We
then use the model to generate test cases repeatedly in a fuzzing
campaign.

Our approach is inspired by the dynamic nature of kernel API
calls, in which kernel APIlogs taken from the executions of the same
program with the same input can vary. The call sequences can di-
verge due to thread interleaving. The parameter values can change
depending on the parameter type or due to non-deterministic OS-
level features such as Address Space Layout Randomization (ASLR).
For example, with regard to running strace on a program with the
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same input twice, we can have two distinct system call traces from
two executions. However, such non-determinism introduces an-
other opportunity for us to infer constant factors from API function
calls, e.g., we can infer which parameter value is a constant. We
leverage this intuition so as to automatically infer an API model.

In this paper, we present the design and implementation of IMF,
the first model-based fuzzer that runs on macOS. Although our
current implementation is specific to macOS, the proposed tech-
nique is general and can be applied to other operating systems.
We evaluated our system on macOS Sierra version 10.12.3 (16D32),
which was the latest version at the time of this writing, with API
logs obtained from hundreds of applications downloaded from the
App Store. We ran fuzzing for 1,740 hours on 10 Mac minis. As a
result, IMF found a total of 32 previously unknown kernel panics
on macOS Sierra. Our experiment also shows that IMF can find 3%
more bugs than an existing kernel fuzzer [4] in the same amount
of time.

Overall, this paper makes the following contributions:

(1) We introduce a novel method called model-based API fuzzing,
which exploit the similarity between API logs to produce
random yet well-structured API call sequences.

(2) We implement our idea in a prototype called IMF, which is
the first model-based API fuzzer for testing commodity OS
kernels.

(3) We evaluate IMF on macOS, and found 32 kernel vulnerabil-
ities that lead to a kernel panic.

(4) We make our data and source code public in support of open
science: https://github.com/SoftSec-KAIST/IMF.

2 BACKGROUND

In this section, we start by reviewing the concept of API fuzzing.
We then summarize the history of kernel fuzzing, and the motiva-
tion behind our research. Lastly, we briefly describe the internal

structure of macOS, which is the main target of this paper.

2.1 API Fuzzing

befalsel For example, given a buggy function f that takes in an
integer value as input and crashes when the value is greater than
100, if a program exists that always calls f with a constant integer
0, we cannot say that there is a bug in the program despite the fact
that the program calls the buggy function f, because the bug will
never trigger in the program.

cannot run the program on a victim’s machine. If the attacker

has the ability to do so, then the attacker had already gained the
privileges of the victim.

between theuserand thekernelispace! In particular, an attacker

can exploit kernel API bugs to gain unprivileged root access. Local
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Figure 1: The history of kernel fuzzing. 4 denotes that a tool
was created. & denotes that a paper describing the work was
published.

privilege escalation can be useful after a successful remote exploita-
tion. For example, attackers who obtain remote user-level access,
can further exploit kernel vulnerabilities in order to install a kernel
rootkit on the victim’s machine.

2.2 Kernel Fuzzing

Despite its popularity, there have been few systematic studies of
kernel fuzzing. Many kernel fuzzers provide their source code, but
the lack of a concise description of their algorithm and clarification
of their design decisions makes it difficult for other developers to
learn from existing works. As a result, similar methodologies are
repeatedly appearing even up to present.

In this paper, we summarize the history of kernel fuzzing and
highlight recent advances in this area. Figure 1 presents the overall

history of kernel fuzzing. Weldefine fourmajor categories: random:
based, type-aware, hooking-based, and feedback-driven fuzzing.

Random-based Kernel Fuzzers. The history of kernel fuzzing
dates back to 1991, when Tin Le released the tsys fuzzer [34], which
was simply written in about 250 lines of C code. The idea of the
fuzzer is simple: it invokes a series of randomly selected system
calls to UNIX System V with randomly generated arguments. The
same design even appears nowadays: [26, 52] also use the same
methodology. We refer to fuzzers in this category as random-based
kernel fuzzers.

Type-aware Kernel Fuzzers. Koopman et al. [31], in 1997, com-
pared the robustness of OSes with a finite set of manually chosen
test cases for system calls. The test cases were carefully generated
based on their type. For example, they used seven predefined val-
ues for types of file handles including an opened handle for read
operations, an opened handle for both read and write operations,
and a closed handle. Similarly, each parameter type, such as buffer,
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length, and file mode, had a set of designated values. They tested
each system call with all possible combination of predefined values
based on their parameter types.

In 2010, Trinity [25] extended the idea by adding some ran-
domness for the generation of test cases. For example, it selects a
random integer value for a length parameter, whereas Koopman
used only eight predefined integer values. Moreover, Trinity does
not exhaustively test all possible combinations of parameter val-
ues, because there are simply too many possibilities due to the
randomness. Instead, it randomly selects a value for each parameter
during a fuzzing campaign. For example, whenever it encounters
a read system call, where the first parameter is a file descriptor,
it randomly selects one from a pool of valid file descriptors initi-
ated when fuzzing starts. It also generates the remaining parame-
ter values in a similar fashion. KernelFuzzer [33], Chen et al. [9],
Syzkaller [53], iknowthis [44], TriforceLinuxSyscallFuzzer [40], and
perf_fuzzer [55] are in this category. We call such fuzzers type-
aware kernel fuzzers. Type-awareness appears in most recent kernel
fuzzers including [17, 21]. For example, Eris [17] improves upon
Trinity by adapting the concept of combinatorial testing when
selecting parameter values.

Hooking-based Kernel Fuzzers. Someéfuzzers attempt to'fuzz
the API calls by intercepting API function calls while running a
program. We call such fuzzers hooking-based kernel fuzzers. IOCTL
Fuzzer [42] specifically aims to fuzz IOCTL requests of Windows
by hooking a single API call, NtDeviceIoControlFile, randomly
mutating its parameter values at runtime. Similarly, IOKit fuzzer [4]
hooks a single IOKitLib function, I0ConnectCallMethod, which
can be considered as a counterpart of NtDeviceIoControlFile on
Mac. PassiveFuzzFrameworkOSX [36] hooks API functions in XNU
kernel with a custom kernel driver. Fizzerslin'this'category do'iol
generate concrete test cases. That is, even if they found a kernel
crash, they do not produce the corresponding program that triggers
the bug when it runs. This is the key difference between traditional
mutation-based fuzzing [8, 56] and hooking-based fuzzing. Further-
more, hooking-based fuzzers always follow error-handling routines
of a program, which can limit their testing scope (see §3.1).

Feedback-driven Kernel Fuzzers. Some kernel fuzzers such
as Syzkaller [53], kernel-fuzzing [43] and TriforceLinuxSyscall-
Fuzzer [40] leverage code coverage during the generation of system
calls. Specifically, they choose one from among randomly generated
system calls that maximizes the code coverage. The same principle
is indeed used in state-of-the-art userland fuzzers such as AFL [60]
and honggfuzz [50]. Similarly, perf_fuzzer [55] repeatedly calls a
system call with random parameters until the call succeeds. That is,
it uses the return code from a function as feedback. Lei [37] presents
an approach similar to that of perf_fuzzer for fuzzing I/O kit on iOS.
We refer to the fuzzers in this category as feedback-driven kernel
fuzzers.

Our Contribution. None of the kernel fuzzers discussed thus
far takes calling contexts into account. One notable exception is
[19]. Gauthier et al. propose the use of a manually constructed
API model. However, they did not implement nor evaluate their
approach, and the approach relies on manual construction of an
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Figure 2: XNU Kernel architecture.

API model. To the best of our knowledge, IMF is the first practical
attempt to realize model-based kernel fuzzing.

2.3 Mac OS and its Kernel

Since the codename Sierra, the name of Apple’s OS for desktops
and servers has become “macOS”, which was previously known as
“Mac 0S”, “Mac OS X”, or “OS X”. Unless otherwise specified, the
term macOS in this paper means the Sierra version of Apple’s OS,
which is the latest version at the time of this writing.

XNU is the kernel of macOS, which consists of three major com-
ponents: Mach, BSD, and I/O Kit [22, 35]. Both Mach and BSD form
the basis of the XNU kernel. The Mach component is responsible for
various low-level tasks such as processor management, interrupt
management, and inter-process communication. The BSD compo-
nent of XNU handles higher-level operations compared to Mach
such as file system and network management. It also provides APIs
for POSIX and system calls. I/O Kit is a framework for device dri-
ver development and management. It provides an abstract view of
the system hardware with an object-oriented programming model.
IOKitLib is a set of API functions provided with I/O Kit. A user
program can access a device with functions in IOKitLib. Figure 2
simmarizes the architecture of XNU_TOKitlib itself runs in user

mode, but it invokes functions in the kernel and drivers.

I/O Kit is currently a popular hacking target. Hackers attempt
to jailbreak iOS by exploiting I/O Kit vulnerabilities [38]. They
write fuzzers that specifically target IOKitLib functions [4, 21, 37].
By fuzzing the IOKitLib functions, we can directly find bugs in
device drivers, which typically run in privileged mode, as well
as in the kernel (I/O Kit) itself. We emphasize again that none of
the previous I/O Kit fuzzers consider API specifications. Our main
fuzzing target is also IOKitLib API functions. However, the proposed
idea is general enough to be applied to any kind of API function
such as Linux system calls and the Win32 API of Windows.

3 OVERVIEW

The primary goal of IMF is to automatically determine an API
model, and to use the model effectively to fuzz the kernel. In this
section, we present an example that motivates our research. Next,
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1 uint64_t inScalar[0x10];
2 char inStruct[0x1000];

3 uint64_t outScalar[0x10];

4 uint32_t outScalarCnt = 0x0;

5 char outStruct[0x1000];

6 size_t outStructCnt = 0x0;

7 io_iterator_t iterator;

8 io_connect_t conn;

9 io_service_t service;

10 CFMutableDictionaryRef r = IOServiceMatching("IntelAccelerator");
11 I0ServiceGetMatchingServices(kIOMasterPortDefault, r, &iterator);
12 service= IOIteratorNext(iterator);

13 I0ServiceOpen(service, mach_task_self(), 0x1, &conn);

14 I0ConnectCallMethod(conn, 0x205, inScalar, 0x0, inStruct, 0x30,

15 outScalar, &outScalarCnt, outStruct, &outStructCnt);
16 I0ConnectCallMethod(conn, 0x206, inScalar, 0x0, inStruct, 0x1,
17 outScalar, &outScalarCnt, outStruct, &outStructCnt);

Figure 3: An example program that exploits a kernel vulner-
ability (CVE-2015-7077) using IOKitLib functions.

we show the overall architecture of IMF. Finally, we describe several
challenges in the design of IMF.

3.1 Motivation

To see why understanding an API model is important in API
fuzzing, we initially present how IOKitLib functions are used in
the wild. Figure 3 shows a code snippet taken from a recent macOS
kernel exploit [39]. The I0ServiceMatching function in Line 10
creates a dictionary that can match Intel’s graphics drivers. The
function I0ServiceGetMatchingServices then returns a pointer
(iterator) to a list of matching drivers. In Line 12, we obtain a handle
for the first matching driver from the iterator. Next, we open a
connection to the device driver with I0ServiceOpen in Line 13. The
second argument of the function is a kernel port, which indicates
who is requesting the connection. The mach_task_self function
returns the caller’s kernel port. The third argument of the function
specifies the connection type. Here, type 1 indicates that we open a
connection to the IGAccelGLContext interface of the driver. The
function returns the handle of the interface to the variable conn.

Finally, we make two calls to I0ConnectCallMethod, which
takes in ten arguments as input. The first argument is the connec-
tion handle (conn), and the second is a selector specifying which
method to call. The remaining arguments specify the parameters to
be used in the method. The third argument is a pointer to an array
of scalar (64-bit number) input values, and the fourth argument is
the size of the array. The fifth argument is a pointer to a C struct
input, and the sixth argument is the size of the struct. Similarly,
the last four arguments denote output parameters to the method.
In Lines 14 and 15, we invoke the gst_operation method (0x205)
and the gst_configure method (0x206) of IGAccelGLContext,
respectively, with the input/output parameters prepared on the
stack. The vulnerability is at Line 16, where the second call to
I0ConnectCallMethod uses a small struct size (0x1). Given that
gst_configure does not check the size of the input struct, we can
trigger an out-of-bounds memory access.

This example highlights the difficulty of triggering vulnerabili-
ties by invoking API calls. The vulnerability is triggered only when
we invoke the API functions in a specific order with a specific set
of values. In this paper, an API model specifies (1) in which order

IMF
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Program |  execAndlLog 1 C file
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Figure 4: IMF Architecture.
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API functions should be called, and (2) which value should be used
for each parameter in each function.

In this paper, an API model includes two types of dependences
between function calls. The first is an ordering dependence, which
indicates that a call to function A should always precede a call to
function B. The second is a value dependence, which shows the
relationship between an output of a call to A and an input of a call
to B. Indeed, a similar intuition is found in the literature on malware
behavior analysis [11], where their goal is to extract behavioral
features from API call sequences.

Ordering Dependence. The ordering of function calls matters.
From the previous example, a call to I0ConnectCallMethod should
appear after a call to I0ServiceOpen, as there must be an open
connection to a device driver in order to invoke a method in the
driver. We call such dependence as ordering dependence. We denote
as A < B, when there is ordering dependence between A and B: A
should precede B. The two function calls to I0ConnectCallMethod
in Figure 3 also have ordering dependence: if the order between
the two calls changes, the vulnerability is not triggered because
the first call initializes an internal data structure that is used by the
second call.

Value Dependence. Most API functions take in data returned
from another API function. When a returned value of function A is
used as input to a call to function B, we say that two functions have
value dependence. For example, in Figure 3, I0ConnectCallMethod
takes in as the first argument a connection handle that is returned
from I0ServiceOpen. Note that in Figure 3, we had to call a se-
ries of API functions (from Lines 10 to 14) in order to trigger the
vulnerability. However, simply invoking the same sequence of API
functions with random parameter values does not help in this case,
because most functions are dependent on other functions. Without
considering the dependence relationship, it is unlikely to find such
an instance of vulnerability.

3.2 Architecture

We introduce IMF, a system that automatically finds kernel API
vulnerabilities with inferred API models. At a high level, IMF auto-
matically determines both ordering and value dependences between
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API logs, which we call an API model, from program executions
and uses it to fuzz the target API functions. IMF consists of the
three major components including a logger, an inferrer, and a fuzzer.
Figure 4 describes the overall architecture of IMF.

Logger. The logger takes in as input a list of definitions of tar-
get API functions, a program, an input to the program, and the
number of logs to take (L). It returns a list of L API logs obtained
by executing the program L times with the given input. Figure 4
does not present the parameter L for simplicity. If not given, we
use L = 1,000 by default in our implementation. The definitions
of API functions are prototypes with annotations, which describe
how each function uses its parameter. That is, an annotation of a
parameter specifies whether the parameter is used as input, output,
or both. We assume that such definitions are given by an analyst.
The input to the program is a combination of a file, a command line
argument, mouse events, etc. The hook function installs APT hooks
in the program, and outputs a modified program. The execAndLog
function executes the modified program L times and stores the
history of every hooked function call along with the parameter and
the return values for each execution (see §4.1).

Inferrer. The inferrer figures out the API model, i.e., both order-
ing and value dependences between API calls, from the L API logs
returned by the logger. Specifically, it takes in as input the maxi-
mum number of logs to use N and the L APIlogs, where N < L, and
outputs an inferred model. First, the filter function of the inferrer
selects N logs from the L API logs, which have the longest common
prefix. The returned logs are then used to infer the model in the
infer function to determine the ordering and value dependences
(see §4.2).

Fuzzer. The fuzzer module takes in an inferred API model from
the inferrer and a fuzzing configuration as input, and outputs bugs
found along with the test cases. The generate function converts
the inferred model into a C file. IMF compiles this C file into an
executable. The execute function takes in the compiled executable
program and the fuzzing configuration as input, and iteratively
runs the program to find bugs. When a kernel panic occurs, the
rebootAndLog function of IMF checks if the corresponding crash
log exists. If so, it stores the log in our bug database. The fuzzer
module then resumes the fuzzing process. This process repeats until
it reaches a timeout (see §4.3).

3.3 Running Example

To describe the overall procedure of IMF, we use an application
called “2048 Game” as our running example, which was the second
most popular game in App Store as of March of 2017. Suppose we
run IMF with five inputs: (1) a header file that defines the proto-
types of IOKitLib API functions with annotated parameters; (2)
the 2048 Game application; (3) a series of mouse clicks as input
to the program, generated by a small script that we wrote; (4) the
maximum number of logs to take (N), which is 2 in this example;
and (5) the fuzzing configuration, which essentially describes how
API calls are fuzzed. IMF works via the following steps.

First, IMF installs API hooks in the program based on the given
header file prior to executing the program. An analyst can declare
any functions to hook in the header file, but for this example, we

assume that we are targeting all of the IOKitLib functions. IMF runs
the program with the given input 1, 000 times, i.e., L = 1,000. For
each hooked function call, the logger of IMF refers to the corre-
sponding function definition to check the type and the attribute of
the parameters. For example, it checks whether a parameter is used
as input, output, or both. It then returns an API log for each execu-
tion of the program, which is essentially a list of input and output
values for each function call encountered during the execution. In
the end, the logger results in 1,000 API logs.

Due to the non-deterministic nature of GUI events, the 1,000
API logs are mostly different from each other. In this example,
IMF selects N(= 2) logs that contain the longest common prefix.
We detail how we filter out the logs in §4.2. Figure 5a shows two
example snippets of API logs generated from the application. Note
that both logs have exactly the same sequence, but their parameter
values differ.

Now that we obtained the subset of the API logs, the inferrer
module of IMF infers both ordering and value dependences between
the API calls in them. First, we assume that the order of the API calls
in the log should be preserved. This gives us over-approximated
ordering dependences between the API calls, because we may in-
clude unnecessary ordering dependences in our model. However,
we relax this assumption when we fuzz API calls. The intuition is
that bugs frequently occur when a random-yet-legitimate-looking
API sequence is used. From the example, we obtain the following
ordering dependences:

(1) I0ServiceMatching < IOServiceGetMatchingService
(2) 10ServiceGetMatchingService < I0ServiceOpen
(3) I0ServiceOpen < I0ConnectCallMethod

Next, the inferrer finds constant function parameters that are
always identical across all the subset of the logs. Because it knows
from the API definition that which parameter has a handle type,
e.g., io_service_t and io_connect_t, it does not count such a
parameter as a constant (see §4.2.2). In Figure 5a, the values in green
boldface indicate constant parameters. With this information, the
inferrer searches for a pair of the same input and output values in
the log. However, it excludes input values that are constant. In this
example, the return value of the first function call (0xd32e0a99) is
the same as the second parameter of the second function call. Thus,
we say those two parameters have a value dependence. However,
even though the third argument of the fourth function call (0x0)
has the same value as the return value of the third call, we do not
say there is value dependence between them, because the input
value is a constant. We denote the value dependences by dashed
arrows in Figure 5a. IMF employs several heuristics to improve the
accuracy of the dependence inference, which we describe in §4.2.

Combining both ordering and value dependences along with the
API definitions given by an analyst, IMF automatically generates a
model. Figure 5b presents the derived API model from our example
in C language. In our actual implementation, we use an Abstract
Syntax Tree (AST) to represent the API model. Each function call
in the model follows the order of the original logs in Figure 5a. It
also shows clear value dependences between functions with the
use of variables. Constant values are directly used in the model, as
in Line 7 and 10. The relationship between a pointer to a structure
and the length of the structure is also represented in Line 8 and 9.
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I0ServiceMatching("IOSurfaceRoot")

Ls0xd3260a90 ===================- Y

I0ServiceGetMatchingService(0x0, 0xd32e0a90)

Lsox10127 ===~

I0ServiceOpen(0x10127, 0x103, 0x0, out)

L»ox0, out:[x102031--=

I0ConnectCallMethod(0x10203, 0xd, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
out, inout:[0x14])

L’Ox@, out:[0x3f, ...], inout:[0x14]

I0ServiceMatching("IOSurfaceRoot")

Le0x31177280 =================uq Y
I0ServiceGetMatchingService(0x0, 0x31177280)
Ls0x10327 -----~, 4

I0ServiceOpen(0x10327, 0x103, 0x0, out)

Le0x0, out:[ex104031-==;

I0ConnectCallMethod(0x10403, Oxd, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
out, inout:[0x141)

Laoxo, out:[0x3f, ...1, inout:[@x14]

(a) Two API logs. A solid arrow shows a return value from a function,
a dashed arrow indicates a value dependence.

1 io_connect_t conn;

2 io_service_t service;

3 size_t outStructCnt;

4 void* outStruct;

5 CFMutableDictionaryRef r = IOServiceMatching("IOSurfaceRoot");
6 service = I0ServiceGetMatchingService(0x0,r);

7 I0ServiceOpen(service,0x103,0x0, &conn);

8 outStructCnt = 0x14;

9 outStruct = calloc(outStructCnt,0x1);

10 IOConnectCallMethod(conn, 0xd, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
11 outStruct, &outStructCnt);

(b) An inferred model from the logs in C.

Figure 5: An example from an app. called “2048 Game”.

The outStruct variable is a pointer to a structure the size of which
is outStructCnt. IMF retrieves such relationships from the API
definitions given by an analyst and represents them in the model.
The fuzzer module of IMF finally generates a C program from
the API model. In the final C program, we replace every parameter
in the model with a function call that returns a random value of a
specific type. For example, we change Line 5 of Figure 5b to

CFMutableDictionaryRef r =
I0ServiceMatching(mutString("IOSurfaceRoot"));

where mutString is a function that returns a randomly generated
string pointer from a given string pointer and a fuzzing config-
uration. The fuzzing configuration is a set of user-configurable
parameters that includes a PRNG’s seed. Thus, the function always
returns the same value if the same seed is used. We define mu-
tation functions for several different types as well as the fuzzing
configuration in §4.3.

The fuzzer module of IMF is responsible for executing the gener-
ated program. For every iteration, IMF simply changes the value of
the PRNG’s seed, and run the generated program, which will invoke
a series of API functions with randomly mutated parameter values.
When the OS hangs or crashes with a kernel panic, IMF checks
the corresponding crash dump. If the dump exists, IMF stores it in
the bug database along with the PRNG’s seed value. This process
repeats until a timeout is reached.

4 DESIGN

In this section, we describe the design of IMF in detail. For each
module we described in §3.2, we present our design decisions and
several challenges we faced while implementing our system.

4.1 Logger

We address two challenges in designing the logger. First, we need to
consider how much data we should record from the logger. Second,
we should generate inputs to GUI applications in order to log the
API calls.

4.1.1  Amount of Data to Log. The logger records the input and
output values for each hooked API function call. However, it is not
clear how many levels of pointer indirection we need to deal with.
One needs to follow all the pointers to store all data completely,
but this imposes a significant space overhead. In our current im-
plementation, we only store the data up to one level of pointer
indirection. We believe that our inferrer can infer more accurate
dependences as we log more data, but we leave it as future work to
handle additional levels of indirection.

When a hooked API call is invoked, the logger examines the
type of parameter, and decides which values to log. When the type
of a parameter is a pointer, we store both the value of the pointer
and the corresponding dereferenced value. When the pointer is a
character pointer, we log the corresponding C string, i.e., an array
of characters that ends with a NULL character.

4.1.2  Input Generation. Most applications used in this paper
are GUI applications. Because GUI applications typically listen for
keyboard and mouse events as input, we need to have a way to
automatically generate such inputs in order to run them repeatedly.
We use PyUserInput [3] to construct mouse events for each program
that we are running. Suppose we are targeting a game application.
We first manually outline a series of mouse clicks required to play
the game. We then compute specific X and Y coordinates for each of
the mouse clicks, and write a script using the PyUserInput library.
To handle more complicated interactions, one may use an advanced
GUI automation tool such as Sikuli [59]. However, we note that
our focus is on fuzzing, and not on taking accurate API logs. Thus,
incorporating such a tool in IMF is beyond the scope of this paper.

4.2 Inferrer

Recall from §3.2, the inferrer module mainly performs two steps. We
explain how we filter out API logs. Then, we describe our algorithm
of API model inference.

4.2.1 Log Filtering. APIlogs taken from the same program with
the same input can contain largely different sequence of API func-
tion calls with distinct input/output values. Pointers to heap or stack
objects can change over executions due to ASLR. Multi-threaded ap-
plications as well as event-driven applications can result in different
call sequences due to its non-deterministic nature.

The filter function of the inferrer selects N logs that have the
longest common prefix from the given the entire set of logs. It
then collects the prefix part of each of the selected logs in order to
construct a set of call sequences S that have exactly the same order
and the same number of of API calls. We note that even though
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the call sequences in S have the same order, they are likely to have
different parameter values due to the non-determinism, which gives
us new opportunities to figure out the API model.

4.2.2 APl Model Inference. We determine two types of depen-
dences in the inferrer: ordering and value dependence. First, the call
sequences in S already show the ordering dependences between API
function calls. Since the same order of API calls appeared N = |S]
times in the legitimate execution of the same program with the
same input, we can over-approximate the ordering dependences by
considering that the ordering of API calls should follow the exact
same sequence as in one of the sequences in S.

To compute the value dependences, we first identify constant
input parameters from the sequences. Given N different call se-
quences in S of the same size, there can be input parameters that
have the same value across different sequences. When an input
parameter of a function, i.e., a parameter that is annotated as an
input in the definition of the function, always has the same value in
N different call sequences, we conclude that such parameter values
are used as a constant. because input variables are likely to change
across executions if they are returned from a function. We call such
an input parameter as a constant input parameter.

Let sllfj be the ith parameter of the jth API call in the kth call
sequence in S. If there exists i and j such that sl.l’j = sij =...= sf\s
then we say the parameter s; j is a constant input parameter. For
example, the second and the third parameter of open system call
are constant input parameters, because their value never changes
even though we execute the program multiple times with the same
input. However, the first parameter of open can vary over multi-
ple executions, if the string is dynamically allocated. We employ
a type-based heuristic to improve the accuracy of our analysis. In
particular, we exclude handle types when judging a constant pa-
rameter, because handle types, e.g., a file descriptor, may have the
same value across multiple executions even though they are not
actually a constant.

Next, we consider approximated data flows from an output pa-
rameter to an input parameter. For a given input parameter value
in a sequence s € S, we check if there are any prior function calls
in s that have the same output value. If so, we say that the input
parameter is value-dependent on the output parameter. When an
input parameter is value-dependent on multiple output parameters,
we take a parameter that is used in the most recently invoked func-
tion. The key rationale here is that recently used variables are more
likely to be live [1].

Improving the Precision. Of course, the above approach can
result in false value dependences, because it relies only on the pa-
rameter values. To reduce such false dependences, the inferrer em-
ploys the following two techniques. First, it excludes data flows to
a constant input parameter. Intuitively, a constant input parameter
does not get its value from an output of a function. Second, we de-
rive sets of value dependences on each of the N call sequences, and
compute the intersection of them. Each call sequence can exhibit
different dependence relationships due to dynamically changing
parameter values. By taking the intersection of the sets, we can
potentially remove false dependences. The primary intuition of
both techniques is that multiple API logs from the same program

execution can help in inferring data flows between parameters. We
evaluate the effectiveness of these techniques in §5.2.

The Output. The final output of the inferrer is an Abstract Syn-
tax Tree (AST) of a C program. The ordering dependences naturally
lead to a series of function call statements in the specific order. The
parameters in each of the function calls are filled with constant
values and variables. For constant input parameters, we use the
constant values appeared in the log. For non-constant input param-
eters that have a value dependence, we declare a variable of the
parameter type, and connect the corresponding output parameter
with the input parameter using the variable. Suppose the first pa-
rameter of a function “void B(int b)” is value-dependent on the
first parameter of a function “void A(intx a)”, and the type of
the parameter is int. Then, we create an AST node that comprises
the following statements:

int a_0;

int b_1;

A(8a_0);

b_1 = a_o;

B(b_1);
Each variable name is suffixed with a number that indicates the
order of appearance. Finally, for those non-constant input variables
that do not have any dependence relationship, we simply use the
same concrete value appeared in the log. Since there are N possible
values to use, we take one of the values at random.

4.3 Fuzzer

The fuzzer module in IMF takes in an API model (in an AST) and a
fuzzing configuration as input, and generates a C program that can
fuzz the kernel API functions in the model. The key question that
we need to answer is: how can we generate a C program from the
given AST in such a way that it can fuzz the kernel API functions
every time it runs.

4.3.1 Fuzzing Configuration. A fuzzing configuration comprises
five user-configurable parameters: (1) T is a timeout, (2) I is the
number of iterations, (3) P is a mutation probability, (4) F is the
number of fixed bits, and (5) R is a PRNG’s seed. IMF iteratively runs
the final C program until the given timeout reached. The program
takes in the fuzzing configuration parameters as command line
arguments. The number of iterations I specifies how many times
we should repeatedly call API functions. Both mutation probability
P and the number of fixed bits F are used in mutating parameter
values (§4.3.2). APRNG’s seed R is an optional argument that is only
used when we reproduce bugs found. If it is given by an analyst,
the program initializes its PRNG with R. Otherwise, it initializes the
PRNG with the system time. This is to help in deterministically re-
producing test inputs we used in each fuzzing iteration. We discuss
how we store the seed values in §4.3.3.

4.3.2  Mutation Strategy. IMF employs two simple mutation
strategies. First, it replicates a given API call sequence of the model.
Second, it randomly mutates parameter values based on the given
model. We use the same intuition as in traditional mutational
fuzzing: we mutate only a subset of the parameters at random,
because mutating every parameter can easily break the dependence
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relationships between the API calls. Namely, fuzzing should gener-
ate a random, but legitimate-looking input, which is a function call
sequence in our case.

Sequence Replication. The obtained call sequences from the log-
ger may contain only a few number of API calls, e..g, some logs only
contain 5 API calls in our dataset, depending on the program and
the input used. To extend the number of API calls to fuzz while pre-
serving the ordering dependence, we replicate the entire function
calls within a for loop, where the number of iterations I is deter-
mined by an analyst. In our experiment, employing this strategy
helps in finding higher number of kernel bugs (§5.3).

Parameter Mutation. IMF mutates each parameter value based on
the mutation probability P and the number of fixed bits F. The key
design principle here is to mutate parameter values in such a way
that the mutated values are similar to the original. The mutation
probability specifies for each parameter the probability of mutating
its value. For example, when P = 0.01, we mutate each parameter
1% of the time. The number of fixed bits F specifies the number
of higher bit positions IMF should not mutate. For example, when
F = 20, IMF will mutate only the lower 12 bits of an int32_t
parameter by XORing the lower 12 bits of the parameter with a
12-bit random number. When F = 0, IMF will simply replace the
whole parameter value with a random number.

IMF performs type-based parameter mutation. It replaces each
parameter in the AST with a call to a mutation function. We define
mutation functions for each primitive type including char, short,
int, etc.. Each mutation function takes in the original value in the
model, and mutates the value based on P and F. We note that F
may exceed the size of a certain type. For example, when F = 16, a
mutation function for int8_t has a smaller number of bit positions
to mutate compared to F. In such a case, we only mutate the LSB
of the original parameter value. In case of array types, we call a
mutation function for every element in the array.

4.3.3 Data Collection. Unlike userland fuzzers, IMF may trigger
a kernel panic or a system hang when it finds a bug. Thus, it must
save the current value of the PRNG’s seed into permanent storage
prior to the execution of the program. Otherwise, we may lose the
last parameter values used to crash the kernel. Specifically, IMF
stores the current seed value in a status file located on a config-
urable path. To detect a system hang, IMF employs a watchdog.
It periodically checks the last modified time of the status file, and
if the file is not updated for more than five minutes, it forcefully
reboots the OS. When the OS reboots, IMF checks the last panic
log and stores the corresponding PRNG seed into our bug database
along with the corresponding crash dump.

4.4 Implementation

We have implemented IMF with 1.2K lines of Python code. We used
PyUserInput [3] library for a keyboard and mouse automation. To
speed up the model inference, we used multiprocessing libraries in
Python. IMF currently relies on manually constructed API defini-
tions, which is written in Python. To compile the generated C file,
we used an LLVM compiler (8.1.0) provided by Xcode 8.3.

To write a log file, the logger needs to consider the App Sandbox,
which is an access control mechanism used in macOS. Specifically, it

restricts the access of applications to files, network connections, or
a hardware component such as a camera or a microphone. In order
to use such a resource, developers must specifically request access
to the OS. For our purpose, we need to check in which directory we
have a permission to write files, because the logger must write a log
file to disk. To this end, IMF determines a writable directory path by
parsing an information property list file (Info. plist), which stores
app-specific metadata. Any sandboxed apps have full read/write
access to its container directory, and hence the logger does also.

Finally, we make our source code public on Github to boost
future research towards effective kernel fuzzing: https://github.
com/Softsec-KAIST/IMF.

5 EVALUATION

We now evaluate IMF on macOS to answer the following questions:

(1) Can IMF infer accurate API models? (§5.2)

(2) Does mutation configuration affect the effectiveness of fuzzing?
(§5-3)

(3) How does IMF perform compared to the existing kernel
fuzzers? (§5.4)

(4) Can IMF find realistic vulnerabilities? (§5.5)

5.1 Experimental Setup

We ran a series of experiments on 10 Mac minis (late 2014). Each
machine was running macOS version 10.12.3 (build 16D32), which
was introduced in Jan. 23, 2017, on Intel Core i5 2.6 Ghz CPU with
8 GB of memory. The number of bugs reported from this paper is
based on manual investigation of crash dumps.

API Log Collection. To gather API logs, we first downloaded
105 apps from the US App Store: 5 apps per each of the 21 total
categories. We selected 5 most popular and free apps in each cat-
egory as of Mar. 1st, 2017. We then manually set up a script for
each of the applications to generate GUI inputs as we described in
§4.1.2. We then ran the logger 1,000 times for each application with
the definitions of 93 IOKitLib functions. As a result, we success-
fully gathered logs from the 95 out of 105 applications. We could
not obtain logs from the 10 applications for various reasons: some
programs require specific H/W devices such as Camera, which is
not present our Mac minis; one of the programs uses anti-hooking
techniques; some other programs do not use IOKitLib functions at
all. Thus, in total, we obtained 95,000 logs from the 95 applications.
The average number of API calls in each of the logs was 687. Our
evaluation makes use of this dataset throughout this section.

5.2 API Model Accuracy

Does it really help to have multiple logs in terms of the accuracy
of inferred API models? If so, how many API logs (N) should we
take? We measured the accuracy of inferred models to answer these
questions.

We first ran the inferrer on the 95,000 collected logs in order
to get 95 API models and the corresponding C programs. We then
ran each of the 95 programs without mutating the parameters nor
replicating the sequences, i.e., we set P = 0 and I = 1, in order
to measure the precision of the API models. We then counted the
followings: (1) the number of API calls that return zero, which
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Figure 6: The comparison of API model accuracy w/ and w/o
considering handle types.

means “success”; and (2) the rate between the number of successful
API calls and the total number of API calls. Figure 6 shows two
diagrams depicting the accuracy of the models over N.

5.2.1 Does having multiple logs help? The crux of our system
is that we can increase the precision of the inferrer by having
multiple logs. To justify the intuition, we compare the precision
of derived API models with and without having multiple logs. We
computed the number of successful API calls over N in Figure 6a.
When N = 1, the number of successful API calls was only 86 on
average. However, when N = 2, the number became 263, that
is, the precision was improved by 300%. As we increase N _more.
we get less successful API calls, because the size of the common
prefix between N logs decreases. To better understand the API
model accuracy, we measure the success rate between the number
of successful API calls and the total number of API calls. Figure 6b
shows the success rate over N. When we take 512 out of 1,000 logs,
we could achieve the 90% success rate. This graph clearly indicates
that we always get better accuracy as we increase N, the number
of logs to consider.

Recall from §4.2.2, IMF relies on the handle type information
when it identifies constant input parameters. Since this is an impor-
tant step in our inference technique, we also check the precision of
our analysis with and without having a knowledge about handle
types. Both diagrams in Figure 6 show that considering handle types
gives better accuracy. Furthermore, the same intuition still applies
in this case: as we have more number of logs, we can increase the
precision of our API model inference in terms of the success rate.

Notice, our accuracy measure can have an error: there can be API
calls that return success even though the model is incorrect, or vice
versa. However, since we are averaging the result of 1,000 iterations,
the false success rate should be marginal. We also manually checked
the accuracy of API models that result in kernel panics, and found
that our model was indeed accurate.

5.2.2  Which value of N should we use? From the above result,
it is clear that as we compare more number of logs altogether,
we can obtain more precise API models. However, as it is shown
in Figure 6a, the total number of API calls gets decreased as we

increase N. This is mainly due to the difficulty of having multiple
logs while preserving the size of the longest common prefix: as we
increase the number of logs to consider, we get the shorter common
prefix between them. Since our focus is on fuzzing, but not on
inferring the API model itself, it is important for us to have an
enough number of API calls. Taking this trade-off into account, we
select N = 2 in our experiments in order to maximize the number
of API calls to use while maintaining the reasonable success rate
(84.8%).

5.3 Mutation Configuration

IMF takes in three user-configurable parameters as input to decide
the mutation strategy (§4.3.1). We evaluated the effectiveness of
each parameter by running IMF with several combinations of the
parameters. Specifically, we considered the following parameter
values and their combinations:

(1) Number of iterations (I): 1, 10, 100, 1000.
(2) Mutation prob. (P): Y10, /100, 1/1000, 1/10000, /100000, 1/1000000.
(3) Number of fixed bits (F): 8, 12, 16, 20.

We tested all 96 (= 4 X 6 X4) combinations on a subset of the models
in our dataset. Due to resource limit, we chose only the five API
models taken from the five apps in the game category when N = 2.
We selected game applications because they are largely dependent
on I/O Kit functionalities such as audio and graphics. We fuzzed
macOS for 480 hours in total with the five API models and with
different combinations of the parameters: we ran 1 hour of fuzzing
for each model and each combination of the parameters.

Figure 7 summarizes the result. Each row in the figure shows
the number of unique kernel panics found, the number of userland
crashes, and the number of kernel hangs, respectively. First, we
note that the number of bugs found largely depends on the choice
of I, the number of iterations. We found clearly a larger number of
bugs when I is 100 or above. Second, the mutation probability also
significantly affects the numbers. As we increase the probability, we
could find more kernel panics or crashes. However, if the probability
was too large, i.e., when P = 1/10, then the number drastically
decreased. This makes sense because it is highly likely that we
will break the dependences as we mutate more number parameters.
Indeed, the same intuition has been observed in userland mutational
fuzzing [8]. Finally, the number of fixed bits (F) did not affect much
the result from our dataset.

We conclude that a mutation configuration can affect the ef-
fectiveness of kernel fuzzing. In our dataset, the combination of
parameters I = 1,000, P = 1/1000, and F = 20 achieved the most
effective fuzzing results in terms of the number of kernel panics
found. Thus, we are going to use this parameter combination in the
rest of the experiments.

5.4 Comparison against IOKit Fuzzer

How does IMF compare with existing kernel fuzzers? To answer
this question, we compared IMF against IOKit Fuzzer [4] released
by Google Project Zero in 2014. We selected this fuzzer, because
it is open-sourced and is specifically targeting IOKitLib functions.
Furthermore, it has proven to be effective in finding kernel vul-
nerabilities: it has already found numerous CVEs. To run IMF, we
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Figure 7: # of bugs in each mutation configuration.

selected the five API models we used in §5.3, and chose the param-
eters as I = 1,000, P = 1/1000, and F = 20. We used the same five
game applications to run IOKit Fuzzer. Since it is a hooking-based
kernel fuzzer, we also used the scripts described in §5.1 to generate
GUI inputs while running it.

We ran both fuzzers for 24 hours on macOS, and counted the
number of unique kernel panics found. As a result, IOKit Fuzzer
found 3 unique kernel panics, whereas IMF found 10: IMF discov-
ered 3X more kernel bugs than IOKit Fuzzer, but there was no
overlap between them. And crash points of bugs were different. In
case of IOKit Fuzzer, crash points were in only IOKit Fuzzer thread.
But in case of IMF, crash points were in IMF, reboot, mdworker,
ReportCrash and mds_stores thread. We note that the main dif-
ference between the two fuzzers is that IOKit Fuzzer always follows
the execution of an application due to the nature of a hooking-
based kernel fuzzer. Whenever an API call returns an error, a target
application typically handles the error, e.g., by exiting the function
or the program. On the other hand, IMF will keep execute a series
of API functions regardless of their return code. We believe this
difference gives IMF an opportunity to explore deep in the kernel
code to find latent bugs.

5.5 Large-Scale Bug Finding

Can IMF find realistic vulnerabilities? We answer this question
by fuzzing macOS at large-scale. We ran fuzzing on macOS with
95 API models in our dataset for 1,140 hours in total, 12 hours
for each API model. The macOS version was Sierra 10.12.3, which
was the latest at the time of writing. As a result, IMF found 2,017
kernel panics and 14,703 userland crashes in total. We manually
investigated the corresponding crash dumps of the kernel panics,
and categorized them into 26 unique kernel panic vulnerabilities.
None of the vulnerabilities found were previously known.

Figure 8 shows the number of unique kernel panics found over
time in our experiment. This graph combines all of the fuzzing
results from each of the 95 API models into a single timeline: this is
the reason why the X-axis of the graph ranges from 0 to 12 hours.
Figure 9 presents the number of unique kernel panics found from
API models derived from each category on App Store. At least one
model in each of the 21 categories resulted in a kernel panic. One
thing to note is that the API models derived from the game category
produced the most unique number of kernel panics. It may be the
case that our choice of mutation parameters is optimized for the
game applications (in §5.3). However, we leave it as future work
to study the correlation between the choice of parameters and the
effectiveness of IMF.

We also measured how many IOKitLib functions out of the 93
total are included in the inferred models for each category. Fig-
ure 10 shows the coverage of API functions used in models of each
category with error bars. The green line indicates the averaged
coverage of all the API models, which was 19.1%. From the result,
we could not identify a clear correlation between the API coverage
of a model and the number of unique kernel panics. For example,
the ‘News’ category covered the most number of API functions, but
the number of unique kernel panics found was below the average
(from Figure 9).

We believe that all the vulnerabilities that we found have a
security impact because they can cause at least a Denial-of-Service
(DoS) attack on the entire OS. In the worst case, they may allow
attackers to gain unprivileged root access.

5.6 Case Studies for the Bugs Found

We now discuss all the bugs that IMF found during the experiments
in §5.3, §5.4, and §5.5. Combining all the three experiments, we
found 32 unique kernel panics including General Protection Fault
(GPF), NULL pointer dereference, and kernel object corruption, as
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Figure 9: # of unique kernel panics found from API models
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Figure 10: The coverage of API models derived by applica-
tions in each category. The error bars indicate the minimum
and the maximum coverage of a program in each category.

summarized in Table 1. We note that 6 of the kernel panics came
from the experiment in §5.3, where we fuzzed macOS with various
different combinations of parameters. This result highlights the fact
that mutation configuration is a critical factor in IMF.

The thread column of Table 1 shows in which thread a kernel
panic has occurred. The first three kernel bugs are from a IMF
thread, but all the other vulnerabilities are from a different thread.
It is not surprising that kernel panics can happen in another thread,
because IMF can corrupt the kernel state. One notable case is that
of a reboot thread. Recall from §4.3.3, our watchdog process will
reboot the OS when a kernel hang occurs. We found that sometimes
the reboot process can cause a kernel panic.

The third column indicates where the crashing instruction be-
longs to. In most of the cases, crashing instruction was in the XNU
kernel. The fourth column shows the list of kernel extensions ap-
peared in the stack backtrace. Some kernel panics involve multiple

mov rax, [rdi] mov rdi, [rbx]
mov rsi, ri14 mov rax, [rdi]
call qword ptr [rax+0x50] call qword ptr [rax+0x20]

(a) Page fault. (b) GPF (X).

Figure 11: Kernel panic cases.

kernel extensions, whereas some others do not have any related
kernel extensions (denoted as ‘-’ in the table). The fifth column,
briefly describes the cause of each of the kernel panics. Most kernel
panics were due to heap (zone) corruptions, GPF, NULL pointer
dereference, and page fault. For GPF, we denote the cause within
parentheses, e.g., “General protection fault (R)” means that GPF has
occurred while reading a page.

Finally, the sixth column shows the impact of each of the kernel
bugs. We manually investigated each of the kernel panics, and label
them either with “DoS” or “likely exploitable”. We specify whether
a DoS is from a NULL dereference or not, because it may allow a
control-flow hijack exploit under a certain circumstance (see §5.6.3).
We say a kernel bug is likely exploitable if it satisfies one of the
following conditions.

o The kernel crashed by dereferencing a pointer, but there is a
following instruction within a basic block that jumps to an
address referenced by the pointer.

o The kernel crashed with GPF while attempting to execute a
non-executable page.

We now show two kernel panic cases that are likely exploitable,
and one that is potentially exploitable in a certain environment.

5.6.1 Case 1: Page Fault. Figure 11a shows the 30th kernel panic
listed in Table 1. The kernel crashed at the first mov instruction
before the call instruction. A page fault was the cause: the rdi
register was pointing to an unmapped address. However, we note
that the following call instruction jumps to an address referenced
by the rax register, which can be set by the mov instruction. There-
fore, if we can allocate the memory at address rdi indicates or
control rdi, we can control the instruction pointer. Thus, this is
likely to be exploitable.

5.6.2 Case 2: GPF (X). The second case is taken from the second
kernel panic in Table 1. In Figure 11b, the kernel crashed after the
call instruction, and it threw a GPF because the address referenced
by rax + @x20 was not an executable page. This means that either
the rax register or the memory pointed by rax + ©0x20 is corrupted.
Since at least one of them is already corrupted, it is highly likely
that we can control the instruction pointer by corrupting the same
point with a user-supplied value.

5.6.3 Case 3: NULL Pointer Dereference. The first kernel panic
listed in Table 1 has a NULL pointer dereference. Traditionally,
NULL pointer dereference kernel bugs are considered to be ex-
ploitable because an attacker could allocate a memory page at ad-
dress zero using mmap or similar system calls [49] prior to triggering
a null pointer dereference. However, latest XNU employs several
defense mechanisms on such attacks: (1) disallowing memory alloca-
tion at address zero, and (2) leveraging a hardware-based protection
mechanism, called Supervisor Mode Access Prevention (SMAP) [13],
which prevents kernel code to access user-space memory. There



Idx Thread Crash Point Kernel Extensions in Backtrace Error Type Impact
1 IMF IOAcceleratorFamily2 ~ IOAcceleratorFamily2 NULL pointer dereference DoS (NULL)
2 IMF Kernel AppleIntelHD5000Graphics, IOAcceleratorFamily2 ~ General protection fault (X) Likely exploitable
3 IMF Kernel - NULL pointer dereference DoS (NULL)
4 ReportCrash Kernel AppleFSCompressionTypeZlib, HFS VM map entry corruption DoS
5 ReportCrash Kernel AppleFSCompressionTypeZlib, HFS Zone VM object corruption DoS
6 UserNotification ~ Kernel AppleFSCompressionTypeZlib, HFS VM map entry corruption DoS
7 configd Kernel ApplicationFirewall Zone cookie corruption DoS
8 fontworker Kernel - Zone cookie corruption DoS
9 kernel_task Kernel BroadcomBluetoothHostControllerUSBTransport, ~ Zone cookie corruption DoS
IOBluetoothFamily,
IOBluetoothHostControllerTransport,
IOBluetoothHostControllerUSBTransport
10 kernel_task Kernel IOBluetoothHostControllerUSBTransport, Zone cookie corruption DoS
IOUSBHostFamily
11 kernel_task Kernel BroadcomBluetoothHostControllerUSBTransport, ~ Zone cookie corruption DoS
IOBluetoothFamily,
IOBluetoothHostControllerTransport,
I0OBluetoothHostControllerUSBTransport
12 kernel_task Kernel - Zone cookie corruption DoS
13 mds Kernel - Release non-exclusive RW lock w/o refcount ~ DoS
14 mds_stores HFS HFS Page fault DoS
15 mds_stores Kernel AppleFSCompressionTypeZlib, HFS Zone VM object corruption DoS
16 mds_stores Kernel AppleFSCompressionTypeZlib, HFS Zone VM object corruption DoS
17 mdworker HFS HFS Page fault DoS
18 mdworker HFS HFS Page fault DoS
19 mdworker HFS HFS Unlock not shared rw lock DoS
20 mdworker Kernel HFS General protection fault (R) DoS
21 mdworker Kernel - Release non-exclusive RW lock w/o refcount  DoS
22 reboot Kernel - General protection fault (X) Likely exploitable
23 reboot Kernel - General protection fault (X) Likely exploitable
24 reboot Kernel - General protection fault (X) Likely exploitable
25 reboot Kernel - General protection fault (X) Likely exploitable
26 reboot Kernel - NULL pointer dereference DoS (NULL)
27 reboot Kernel - OSArray registry corruption DoS
28 reboot Kernel - OSArray registry corruption DoS
29 reboot Kernel - OSArray registry corruption DoS
30 reboot Kernel - Page fault Likely exploitable
31 reboot Kernel - Zone cookie corruption DoS
32 reboot Kernel - Zone cookie corruption DoS

Table 1: Unique kernel panics found on macOS with IMF.

are still some possibilities to exploit NULL pointer bugs [51], but
we conservatively mark those bugs as DoS.

6 DISCUSSION

This section discusses various issues related to API logging, API
model inference, parameter mutation, and fuzzer engineering.

Logging APIs. The key intuition of our technique is that there
are more than two API logs that have the common API call se-
quences with different parameter values. However, it is possible
that a program itself manifests non-deterministic behaviors, even
though the same input is used on the program. We believe even
a non-deterministic application can have similar API logs if we
collect an enough number of API logs. Furthermore, our technique
is not application-specific. We can take any applications to gather
legitimate API logs, and fuzz the OS that runs the program.

API Model Accuracy. The current value dependence inference
of IMF only concerns about exact matching. However, there can
be a value dependence between two values that are different from
each other. Although we do not assume that we have source code,
we can potentially figure out value dependences between a pair of
output and input values by mutating the output value and observing
the changes in the input value. One can also improve the ordering
dependence inference by randomly removing function calls from a
given sequence, or potentially get more exact value dependences
with taint analysis. However, inferring more accurate API models
is beyond the scope of this paper.

Mutation Strategy. Currently, IMF employs simple mutation
strategies that perform XORing with a random value based on the
parameters given by an analyst. Although it leverages parameter
type information to handle several primitive types, it does not



handle high-level type information to mutate the parameter values.
It is straightforward to adapt existing mutation strategies from
other type-aware kernel fuzzers such as Trinity [25] and coverage-
guided kernel fuzzer such as syzkaller [53]. Additionally, IMF can
leverage value dependences obtained from the inferrer in order
to dynamically generate API calls instead of replicating the same
sequence in a loop. We believe these are potential future research
directions.

Fuzzing Efficiency. IMF reboots the entire OS whenever it finds
a kernel panic. This entails huge performance overhead, because as
we found more bugs, we have to reboot the system more frequently.
Typically, in our setting, it takes about 2-3 minutes to recover from
a kernel panic, and resume the fuzzing campaign. We believe this
problem can be overcome in several ways. One potential solution is
to employ virtual machines. By using VMs, we can also run multiple
instances of IMF on a single machine. We leave it as future work to
incorporate VMs in IMF.

7 RELATED WORK

In this section, we survey related works in fuzzing, inferring models,
and exploiting kernels. We refer the reader to §2 for kernel fuzzing.

Fuzzing. Although our main focus is on kernel fuzzing, there
has been much research on userland fuzzing. Beyond simple muta-
tion, there are the fuzzers that randomly generate inputs based on
grammars, which are often called generation-based fuzzers, such as
langfuzz [20] and Randoop [45]. A grammar in generation-based
fuzzers is analogous to an API model in IMF. Unlike the existing
generation-based fuzzers, however, we do not assume that such a
grammar is given. Instead, we automatically infer it.

There are fuzzers that require an initial seed input to start gener-
ating test cases. Fuzzers in this category are often called mutation-
based fuzzers, or simply mutational fuzzers. Recently many re-
searchers have been focused on improving the mutational fuzzers [5,
8, 46, 47, 56]. We believe their mutation strategies can potentially
be applied to kernel fuzzers including IMF.

API Model Inference. Mihai et al. [11] construct malware spec-
ifications by inferring a model from a syscall trace of a malicious
program. However, their work is focused only on a single execution
trace unlike IMF. There is a similar line of work by Choi et al. [10]
who try to infer an API model, which they call a call-flow rule, from
a userland API call trace. Their work share the common theme as
Mihai et al.: they use only a single execution trace. Furthermore,
their focus is on a combinatorial testing of API sequences, not on
fuzzing the kernel API functions to find potential security vulnera-
bilities. There are automatic protocol reversing approaches [6, 15]
from security community. There is also a whole field of research
on automatic API specification inference in software engineering
community. We refer to a recent survey on this field [48]. We note
that our approach is complementary to all these techniques.

8 CONCLUSION

We have presented IMF, the first model-based kernel fuzzer that
automatically infers API models from call traces. IMF produces
multiple API logs from the same program with the same input in
order to compute an API model. It then uses this model to generate

a program that can automatically fuzz the OS under test. We have
implemented IMF, and evaluated it on the latest macOS. As a result,
we found 32 previously unknown kernel panics. Our experiments
show that IMF has a practical impact on kernel security.
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