
Specifying and Checking File System Crash-Consistency Models

James Bornholt Antoine Kaufmann Jialin Li Arvind Krishnamurthy Emina Torlak Xi Wang

University of Washington

{bornholt,antoinek,lijl,arvind,emina,xi}@cs.washington.edu

Abstract

Applications depend on persistent storage to recover state

after system crashes. But the POSIX file system interfaces

do not define the possible outcomes of a crash. As a result, it

is difficult for application writers to correctly understand the

ordering of and dependencies between file system operations,

which can lead to corrupt application state and, in the worst

case, catastrophic data loss.

This paper presents crash-consistency models, analogous

to memory consistency models, which describe the behavior

of a file system across crashes. Crash-consistency models

include both litmus tests, which demonstrate allowed and

forbidden behaviors, and axiomatic and operational spec-

ifications. We present a formal framework for developing

crash-consistency models, and a toolkit, called FERRITE, for

validating those models against real file system implementa-

tions. We develop a crash-consistency model for ext4, and

use FERRITE to demonstrate unintuitive crash behaviors of

the ext4 implementation. To demonstrate the utility of crash-

consistency models to application writers, we use our models

to prototype proof-of-concept verification and synthesis tools,

as well as new library interfaces for crash-safe applications.

Categories and Subject Descriptors D.4.3 [Operating Sys-

tems]: File Systems Management; D.2.4 [Software Engi-

neering]: Software/Program Verification

Keywords Crash consistency; file systems; verification

1. Introduction

Many applications interact with file systems and use them as

persistent storage that will be preserved in the face of hard-

ware or software crashes. To achieve the integrity properties

they desire, these applications must use file system interfaces

correctly. Failure to do so can lead to corrupted application

state and catastrophic data loss [83]. Recent studies by Pillai

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice

and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to

lists, contact the Owner/Author. Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax

+1 (212) 869-0481. Copyright 2016 held by Owner/Author. Publication Rights Licensed to ACM.

ASPLOS ’16 April 2–6, 2016, Atlanta, Georgia, USA

Copyright © 2016 ACM 978-1-4503-4091-5/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2872362.2872406

/* "file" has old data */

fd = open("file.tmp", ...);

write(fd, new, size);

close(fd);

rename("file.tmp", "file");

(a)

open

write0

write1rename

(b)

file’s on-disk state possible executions seen on disk

new open, write0, write1, rename, . . .

open, write0, rename, write1, . . .

open, rename, write0, write1, . . .

old open, crash

open, write0, crash

open, write0, write1, crash

empty open, rename, crash

partial new open, write0, rename, crash

open, rename, write0, crash

(c)

Figure 1. A common replace-via-rename pattern (a) caused

the “ext4 data loss” incident of 2009 [84]. Only the ordering

edges in (b) are enforced by the ext4 file system, which may

split the single write into smaller actions writen. Unexpected

on-disk states (c) arise if the system crashes during execution.

et al. [62] and Zheng et al. [92] show that even mature ap-

plications contain serious persistence bugs, making incorrect

assumptions about the behavior of the file system interface.

To illustrate the challenges in writing crash-safe appli-

cations, consider the 2009 “ext4 data loss” incident, where

multiple users reported that “pretty much any file written to by

any application” became empty after a system crash [19, 84].

The root cause was the pattern in Figure 1(a), intended to

atomically update “file” using a temporary file. Due to mod-

ern file system optimizations, the effects of the program do

not necessarily reach disk in the order they are executed—

only the orderings in Figure 1(b) are enforced. These ordering

relaxations are usually invisible to applications and provide

significant performance gains. But if the machine crashes

during out-of-order execution, the relaxations can become

visible. In this case, the rename can reach the disk before the

福昕
下划线

福昕
下划线

writes. If the machine crashes before the writes persist, users

can see empty or partial files, and lose the old file completely,

as Figure 1(c) shows. One possible fix is to add an fsync(fd)

before close to ensure atomicity: applications will see either

the old or the new data.

Who is to blame for such a bug? On one hand, application

writers argue that file systems are “broken” [56] and are

too aggressive about buffering and reordering file operations.

On the other hand, file system developers argue that this

behavior is allowed by POSIX and, as with relaxed memory

orderings, is necessary for performance [41]. This trade-off

between consistency and performance has long been a point

of contention in file system design [26].

The key challenge for application writers is to understand

the precise behavior of file systems across system crashes.

The POSIX standard is largely silent on the guarantees file

system interfaces should provide in the event of crashes (see

§2.1). In practice, application writers make assumptions about

the crash guarantees provided by file systems, and base their

applications on these assumptions (e.g., file system-specific

optimizations adopted by GNOME [45] and SQLite [77]).

Being too optimistic about crash guarantees has led to serious

data losses [10, 46, 62, 92]. But being too conservative

leads to expensive and unnecessary synchronization, costing

energy, performance, and hardware lifespan [55]. It is thus

critical to describe crash guarantees of file systems in an

unambiguous and accessible manner.

We propose to describe the behavior of file systems

across crashes as crash-consistency models, analogous to

the memory consistency models [1, 75] used to describe

relaxed memory orderings. For example, the application in

Figure 1 assumes sequential crash-consistency—after a crash,

the system appears as if it committed the system calls in order.

The ext4 file system, however, implements a weaker model,

which allows rename to be reordered across a write.

Crash consistency models, as with memory consistency

models, take two forms:

• Litmus tests: small programs that demonstrate allowed or

forbidden behaviors of file systems across crashes; and

• Formal specifications: axiomatic and operational descrip-

tions of crash-consistency behavior using logic and (non-

deterministic) state machines, respectively.

These forms of specification serve different purposes, and

neither can supplant the other. Formal specifications provide

complete descriptions of (dis)allowed crash behaviors and,

as such, provide a basis for automated reasoning about crash

guarantees of applications. Litmus tests, on the other hand,

provide a precise and intuitive description that is well suited

for communicating to application developers, as well as for

validating formal models against file system implementations.

We have developed FERRITE, a toolkit for executing

litmus tests against formal specifications of crash-consistency

models (to ensure that the specifications agree with the

tests) and against real file systems (to validate our models).

FERRITE exhaustively explores all possible crash behaviors

of a given litmus test, both by explicit enumeration and SMT-

based model checking. The enumerator (built on QEMU [7])

executes tests against actual file system implementations,

while the symbolic model checker (built in Rosette [80])

executes tests against formal specifications. We have used

FERRITE both to confirm known crash-safety problems and

to uncover new problems in existing work. Unlike FiSC [88]

and eXplode [89], which use model checking to discover

file system bugs, FERRITE focuses on distilling the crash

guarantees provided by a file system interface.

We show the utility of crash-consistency models with two

proof-of-concept tools for application writers:

• A verifier that proves that a program provides intended

crash guarantees (such as atomicity and durability) with

respect to an operational crash-consistency model;

• A synthesizer that inserts a minimal set of fsync invoca-

tions into a program to make it satisfy intended guarantees

with respect to an axiomatic crash-consistency model; and,

Crash-consistency models also suggest new OS extensions

to better support writing crash-safe applications. Our experi-

ence with designing and using these tools shows that crash-

consistency models offer a pragmatic formal basis for reason-

ing about crash safety, much as memory consistency models

do for reasoning about the correctness of parallel programs.

In summary, the main contributions of this paper are:

(1) litmus tests and formal specifications for precisely de-

scribing file system crash-consistency models, (2) a toolkit

called FERRITE for running litmus tests against formal speci-

fications and file system implementations, and (3) example

applications of crash-consistency models.

The rest of this paper is organized as follows. §2 gives

background on POSIX file systems. §3 introduces litmus

tests and their results using FERRITE. §4 presents formal

specifications. §5 describes how FERRITE works. §6 demon-

strates applications of crash-consistency models. §7 relates

to previous work. §8 concludes.

2. Background

This section provides background on POSIX file systems and

on out-of-order writes to disk in real-world implementations.

2.1 The POSIX file system interface

The POSIX standard [30] defines a set of system calls for file

system access [67]. Applications allocate a file descriptor for

a file or directory using open, to further perform file opera-

tions (e.g., write and read) or directory operations (e.g., link,

unlink, mkdir, and their *at variants [79]). They may explic-

itly flush data to disk using sync or fsync, and deallocate a

file descriptor using close. A call to close frees in-memory

data structures but need not flush data to disk [43].

福昕
下划线

福昕
高亮

福昕
下划线

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
下划线

福昕
高亮

福昕
高亮

福昕
下划线

applications

user space

file systems & page cache

device mapper

block layer

drivers

kernel

disk cache

stable storage

hardware

system calls

disk commands

Figure 2. Linux I/O path example: from applications to disk.

As the effects of file and directory operations may be

cached in memory, the fsync system call is key to providing

data integrity in the face of crashes. POSIX defines the

rationale for fsync [58]:

The fsync() function is intended to force a physical

write of data from the buffer cache, and to assure that

after a system crash or other failure that all data up to

the time of the fsync() call is recorded on the disk.

But POSIX is largely silent on crash guarantees of calls other

than fsync. For example, the standard requires rename to be

atomic, in the sense that when there is no crash, reading

from the destination path can return only the old or new

file content, not an intermediate state. But POSIX does not

specify what should happen when a crash occurs [6]. As

shown in Figure 1, file systems can exhibit unexpected crash

behaviors for system calls such as rename.

2.2 Out-of-order writes

File systems implement a variety of mechanisms to provide

data integrity in the face of crashes. Early file systems re-

lied on check-and-repair tools such as fsck [51] to fix in-

consistent state on disk after a crash. Modern file systems

adopt techniques such as write-ahead logging (or journal-

ing) [27, 28, 54], log-structured file systems [69], copy-

on-write (or shadowing) [11, 17, 29, 44, 68], and soft up-

dates [25, 50], among many others [15, 16, 24, 57, 59, 85].

But the modern operating system’s I/O stack complicates

reasoning about file system guarantees, as it often consists

of multiple layers, each with its own caching and reordering

policies [72].

As an example, Figure 2 shows a typical data path taken

by applications when storing data to disk on Linux. First,

applications invoke system calls such as write to transfer data

from user space into the kernel. A file system may simply

copy the data to the page cache and return to user space;

pushing data further down the stack will happen later, when

the kernel decides to flush the data or applications explicitly

invoke system calls like fsync. Lower-level layers perform

their own optimizations by caching and batching writes. For

example, the device mapper may cache data using a faster,

secondary disk (e.g., bcache and dm-cache), while the block

layer may sort and merge writes, as well as device drivers

and disk controllers [32].

Due to these optimizations, the I/O stack generally persists

data to disk out of program order. Ordinarily, the intermediate

states are invisible to applications, which retrieve data from

the cached, up-to-date version, and so behave as if the system

calls were executed sequentially (as required by POSIX). But

if the system crashes, the intermediate states can be exposed.

Our goal in this paper is to precisely describe the guarantees

provided by file systems in the face of crashes, without the

need to understand details of the I/O stack or file system

implementation.

2.3 Assumptions

Unless otherwise specified, we assume that file systems

are POSIX-compliant, running in their default configuration

mode, on a single disk, and accessed by a single-threaded

application. We focus on what applications should expect

from file systems upon a clean reboot after a fail-stop crash.

We do not consider disk corruption caused by buggy kernels,

broken hardware, or malicious users.

3. Litmus tests

In memory consistency models, a litmus test is a small

program and an outcome that communicates the reordering

behavior of the memory system to application writers [4, 31].

We adopt litmus tests to document the crash behavior of

file systems. A file system litmus test shows a guarantee the

application writer might expect to hold—for example, that

a later write being persisted implies an earlier write is also

persisted. Developers can precisely document the behavior of

their file system by listing whether certain litmus tests hold or

not. Litmus tests are also useful for cross-validating formal

specifications against real implementations.

This section illustrates file system crash-consistency be-

haviors using litmus tests. Our FERRITE toolkit can execute

these litmus tests against a variety of file systems. We show

several examples in which a litmus test clarifies ambiguous

documentation or corrects misconceptions in prior research.

3.1 Specifying litmus tests

In FERRITE, a litmus test consists of three parts: initial setup,

main body, and final checking. It can include POSIX file

system calls and control flow constructs (e.g., dealing with

errors if a call fails). For presentation purposes, we omit

error handling in this section, assuming that all system calls

succeed.

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
下划线

福昕
下划线

福昕
下划线

福昕
高亮

福昕
下划线

福昕
下划线

福昕
下划线

福昕
下划线

福昕
高亮

福昕
下划线

福昕
高亮

福昕
高亮

Below is a simple example of a litmus test:

initial:

f creat("f", 0600)

main:

write(f, "data")

fsync(f)

mark("done")

close(f)

exists?:

marked("done") ^ content("f") 6= "data"

The initial setup is optional. It starts with “initial:” and

contains statements to create an initial file system state for the

main body. It ends with an implicit sync (i.e., whole-system

flush). If the initial setup is omitted, the main body of the test

runs against an empty file system.

The main body starts with “main:” and runs after the

initial setup. The program may crash at any point in the main

body. A special pseudo-function mark labels externally visible

events (e.g., printing messages on screen or responding to

users); the label can be any unique string. We show next how

to use marks to describe durability properties.

The final part is a list of predicates to be tested. A predicate

in the list holds if there exists a (possibly crashing) execution

of the program whose final state satisfies the predicate. The

helper function content(name) returns the file content for the

given file name, or ∅ if the file does not exist; marked(label)
returns true iff the program crashes after the given label.

In the above example, the initial state consists of an empty

file f. The main body of the test appends “data” to the file,

calls fsync, and closes the file. In the final part, the predicate

checks whether there exists an execution in which the file

does not contain “data” after the “done” point.

In the rest of this section, we use litmus tests to show file

system behavior that may be unintuitive to application writers.

The predicates in the final section are surprising outcomes:

a “sequential” file system that performs no reordering will

disallow all these surprising behaviors (i.e., none of the tests’

predicates will hold).

3.2 Litmus tests for file operations

We use FERRITE to develop existing litmus tests for two

types of file writes: append and overwrite. Append writes are

generally more complicated, involving multiple steps (e.g.,

updating inode, data block, and bitmap [5]) and delayed

allocation [78]. Moreover, the on-disk state depends on how

the file system orders updates to metadata (e.g., file size) and

new data. The following litmus tests elucidate the intended

behavior of appends and overwrites.

Prefix-append (PA). The prefix-append (PA) litmus test

checks whether, in the event of a crash, a file always contains

a prefix of the data that has been appended to it:

initial:

N 2500

as, bs "a" * N, "b" * N

f creat("file", 0600)

write(f, as)

main:

write(f, bs)

exists?:

content("file") 6v as + bs

This property, also referred as “safe append” [61, 77], ensures

that no out-of-thin-air or garbage data can appear in a file.

Many applications (e.g., Chrome [10]) assume prefix append.

But popular file systems, such as ext4 in default configuration,

do not guarantee this property, as we show in §3.5.

Ordered-file-overwrites. Most file systems reorder file

writes, which can lead to surprising results for application

writers who assume that these writes happen in program

order. The following two litmus tests express this common

but unsound assumption.

The ordered-same-file-overwrites test checks whether

overwrites to the same file are ordered:

initial:

N 40 * 1024

f creat("f", 0600)

write(f, "0" * N)

main:

pwrite(f, "1", N - 1) # overwrite at offset N - 1

pwrite(f, "1", 0) # overwrite at offset 0

exists?:

content("f")[0] = "1" ^ content("f")[N - 1] = "0"

The ordered-two-file-overwrites test checks whether

overwrites to different files are ordered:

initial:

f creat("f", 0600)

g creat("g", 0600)

write(f, "0")

write(g, "0")

main:

pwrite(f, "1", 0) # overwrite f at offset 0

pwrite(g, "1", 0) # overwrite g at offset 0

exists?:

content("f") = "0" ^ content("g") = "1"

3.3 Litmus tests for directory operations

Litmus tests for directory operations check whether opera-

tions to the same directory or to two different directories can

be reordered. The tests are similar to those for file overwrites

and so we omit them. There is a debate about whether POSIX

prescribes different guarantees for directory operations as

opposed to file operations [6].

3.4 Litmus tests for file-directory operations

The interplay between file and directory operations is subtle

and can have surprising consequences. We develop three

litmus tests to demonstrate such behavior. The first test checks

whether updates to a file and to its parent directory can be

reordered. The next two tests check two widely assumed

atomicity properties of rename, which are referred to as “safe

rename” in the literature. We show (§3.5) that “safe rename”

properties are not guaranteed by most file systems, despite

widespread beliefs otherwise [46, 61, 62].

福昕
下划线

福昕
下划线

福昕
下划线

福昕
下划线

福昕
下划线

福昕
高亮

福昕
高亮

福昕
下划线

福昕
高亮

福昕
高亮

file system kernel PA ARVR ACVR

journaling

ext4 Linux

xfs Linux

log-structured

f2fs [39] Linux

nilfs2 Linux

copy-on-write

btrfs [68] Linux

soft updates (SU+J)

ufs2 [50] FreeBSD

Figure 3. Characterizing file system implementations with

litmus tests using FERRITE:

: FERRITE found no execution satisfying any of the test’s

predicates.

: FERRITE found an execution which allows unintuitive

behavior and may surprise application writers.

Implied-directory-fsync. This test checks whether an fsync-

ed update to a file can be reordered with the creation of that

file (i.e., an update to its parent directory):

main:

f creat("file", 0600)

write(f, data)

fsync(f)

mark("written")

exists?:

marked("written") ^ content("file") = ∅

Atomic-replace-via-rename (ARVR). The ARVR test ch-

ecks whether replacing file contents via rename is atomic

across crashes (i.e., the file contains either old or new data):

initial:

g creat("file", 0600)

write(g, old)

main:

f creat("file.tmp", 0600)

write(f, new)

rename("file.tmp", "file")

exists?:

content("file") 6= old ^ content("file") 6= new

Atomic-create-via-rename (ACVR). The ACVR test is a

variation of the ARVR test in which the destination file

name does not exist initially. The test checks whether the

destination file is either absent or present in its entirety:

main:

f creat("file.tmp", 0600)

write(f, data)

rename("file.tmp", "file")

exists?:

content("file") 6= ∅ ^ content("file") 6= data

3.5 Characterizing file systems with litmus tests

We applied FERRITE to check the litmus tests presented in

this section against commonly used file systems on Linux

4.1 and FreeBSD 10.2, all in default configuration mode (§5

will detail how FERRITE works). Our evaluation covers file

systems using a wide range of crash recovery techniques. As

explained earlier, most file systems reorder file overwrites

and some even reorder directory operations; this is consistent

with previous reports and we omit the corresponding results.

We highlight three tests—PA, ARVR, and ACVR—for

which FERRITE’s results differ from common belief and

previous studies. The results are shown in Figure 3. Unlike

ambiguous documentation, these litmus tests show precisely

which unexpected behaviors are allowed by each file system.

Prefix-append (PA) is not guaranteed by several file sys-

tems, including ext4, Samsung’s new file system f2fs, and

FreeBSD’s default ufs2. This is particularly surprising for

ext4’s default data=ordered mode. According to this mode’s

documentation [42],

[ext4] logically groups metadata information related

to data changes with the data blocks into a single unit

called a transaction. When it’s time to write the new

metadata out to disk, the associated data blocks are

written first.

Many application writers and researchers interpreted this to

mean that metadata updates (e.g., file size) would always

reach disk after file data, and thus the prefix-append property

should hold [10, 55, 62].

However, we observed files with out-of-thin-air trailing

nulls (i.e., binary zeros): a crash after appending 2500 “a”s

and then 2500 “b”s resulted in a file of 4096 bytes, with 2500

“a”s and 1596 nulls. We further observed that ext4 updated

the file size to 4096 without writing the file data block (i.e.,

2500 “a”s and 1596 “b”s) first, which it did not consider

as an “associated data block.” When ChromeOS developers

observed similar behavior, the ext4 developers explained that

it is “working as intended” [10]. Failing to anticipate this

behavior causes application crashes (upon recovery) or even

corrupted data.

Atomic replace-via-rename (ARVR) is not guaranteed by

most file systems, including ext4. After the “ext4 data loss”

incident [84], the ext4 developers changed the behavior

of the file system to accommodate applications that use

the replace-via-rename pattern but do not call fsync before

rename (see Figure 1). The new behavior is described in the

ext4 documentation [42]:

[T]he data blocks of the new file are forced to disk

before the rename() operation is committed. This pro-

vides roughly the same level of guarantees as ext3,

and avoids the “zero-length” problem that can happen

when a system crashes before the delayed allocation

blocks are forced to disk.

The documentation seems to imply that it is safe to omit fsync

in replace-via-rename, as understood by many application

writers and researchers [41, 46, 62]. For example, GNOME

福昕
高亮

福昕
高亮

福昕
下划线

福昕
高亮

and dpkg removed these calls to fsync on ext4 to improve

performance, causing some users to lose data.

Applying FERRITE to the ARVR litmus test shows this

optimization to be unsound on ext4. Recent ext4 does have

a special workaround to reduce the chance of replace-via-

rename producing zero-length files by forcing out the new

data blocks upon rename. However, rename does not wait for

this flush to complete, and therefore provides no atomicity

guarantee—it is possible to end up with only partial new

content after a crash. Of the file systems we tested, btrfs is

the only one that provides the replace-via-rename atomicity

guarantee [13].

Atomic create-via-rename (ACVR) offers atomicity guar-

antees different to those of atomic replace-via-rename (ARVR)

on some file systems. For example, btrfs guarantees ARVR,

but not ACVR. For this reason, the term “safe rename” [62]

can cause confusion for application writers.

Our results show that litmus tests provide a precise and in-

tuitive way of communicating crash-consistency behavior.

In contrast, documentation for file systems is often ambigu-

ous, and so the intent of file system developers can be easily

misinterpreted by application writers.

4. Formal specifications

Litmus tests are an effective medium for communicating

file system crash behavior to application writers. But tests

alone are insufficient for constructing automated reasoning

tools, which improve application reliability and programmer

productivity. This section presents a formal framework for

specifying file system crash-consistency models, analogous

to memory consistency models. In §6, we use formal crash-

consistency models expressed in this framework to develop

automated verification and synthesis tools.

A crash-consistency model defines the permissible states

of a file system after a crash. We develop two styles of

specification: axiomatic and operational. Axiomatic models

describe valid crash behaviors declaratively, using a set of

axioms and ordering relations, while operational models are

abstract machines that simulate relevant aspects of file system

behavior (such as crashes, caching, etc.). We show both kinds

of models for two example file systems: seqfs, an ideal file

system with strong crash consistency guarantees (analogous

to sequential consistency [38]), and ext4, a real file system

with weak consistency guarantees (analogous to a weak

memory model).

4.1 Axiomatic specifications

An axiomatic crash-consistency model consists of a set of

rules, or axioms, that specify whether a given execution

of a program is allowed. We first define programs and

their executions (Definitions 1–3), and then define crash-

consistency models (Definitions 4–7).

Program Executions. Programs update the state of an

underlying file system (Definition 1). As is common in

axiomatic specifications of memory models, we describe

executions of programs in terms of the events (Definition 2)

that they generate, such as writing a block to a file or

renaming a file. These events are atomic, so we model high-

level operating system procedures as emitting sequences

of atomic events (e.g., a system call to write k ⇥ n bytes

generates a sequence of n atomic write events that write k

bytes each). We distinguish between two kinds of events:

update events modify the state of the underlying file system,

while synchronization events constrain the order in which

events may be generated when executing a program. A

sequence of events is called a trace (Definition 3), and a

crash-consistency model decides whether a given trace is

permissible for a program.

Definition 1 (File Systems). A file system σ is a tuple

hσmeta, σdatai, where σmeta is a map from object identifiers

(i.e., names) to natural numbers (analogous to inode num-

bers), and σdata is a map from natural numbers (inode num-

bers) to file system objects (analogous to inodes). Object

identifiers i are drawn from a countably infinite set of sym-

bols I = F [D, consisting of disjoint sets of file identifiers

F and directory identifiers D. We write f and d to denote

file and directory identifiers, respectively, and we write σ(i)
to denote the object σdata(σmeta(i)). A file object σ(f) is a

tuple hb,mi, where b is a finite string of bits, and m is a finite

key-value map of file metadata. A directory object σ(d) is

a map from object identifiers to natural numbers. We write

σ(i) = ? when the object σ(i) has not been created; that is,

σmeta(i) = ?.

Definition 2 (Events). A file system event represents an

atomic access to the file system σ. There are two kinds of

events: update events and synchronization events. Update

events atomically modify the file and directory objects in σ.

Synchronization events synchronize accesses to (parts of) σ.

Update events include writes to file (meta)data and updates

to directory maps:

• write(f, a, d) updates the address a of the file f to contain

the data d (i.e., b[a] = d for σ(f) = hb,mi after the

update).

• setattr(f, k, v) updates the metadata attribute k of the file

f to contain the value v (i.e., m[k] = v for σ(f) = hb,mi
after the update).

• extend(f, a, d, s) sets the “size” attribute of f to s, and

writes the data d to the address a (i.e., m[“size”] = s and

b[a] = d for σ(f) = hb,mi after the update). extend is

used to implement file append operations.

• link(i1, i2) updates i2’s binding to reflect that of i1 (i.e.,

σmeta(i2) = σmeta(i1) and σmeta(i1) is unchanged after the

update).

• unlink(i) removes the binding for i (i.e., σmeta(i) = ?
after the update).

福昕
下划线

福昕
下划线

福昕
下划线

福昕
高亮

福昕
高亮

福昕
高亮

福昕
下划线

福昕
高亮

福昕
下划线

福昕
高亮

福昕
高亮

福昕
高亮

福昕
下划线

福昕
下划线

福昕
下划线

福昕
高亮

福昕
高亮

福昕
下划线

福昕
下划线

福昕
高亮

福昕
高亮

福昕
下划线

福昕
高亮

福昕
高亮

• rename(i1, i2) links i2 to i1 and unlinks i1 when i1 6= i2;

otherwise nothing changes.

Synchronization events include write barriers, as well as

externally observable non-file-system events (such as sending

a message over the network) and events for the beginning and

end of a transaction:

• fsync(i) synchronizes accesses to the file or directory i.

• sync() synchronizes accesses to all files and directories in

the file system.

• mark(l) marks an externally observable event identified

by the unique label l.

• begin() begins a new transaction.

• commit() ends the current transaction.

Definition 3 (Traces). A trace tP is a sequence of file system

events generated during the execution of a program P . We

write tP to denote the total order on events induced by the

trace tP : e1 tP e2 iff e1 occurs before e2 in the trace tP .

Each program P has a canonical trace, τP , which is free of

crashes and generates events in the order specified by the

syntax of P . A trace tP is valid iff it satisfies the following

conditions:

• tP is a permutation of τP .

• tP respects the synchronization semantics of τP . That is,

ei tP ej when ei τP ej and any of the following hold:

ei is an fsync, sync, mark, begin, or commit event;

ej is a sync, begin, or commit event;

ej is an fsync event on i and ei is an update event on i.

• tP respects the update semantics of τP . That is, applying

the update events in the order specified by tP to a file

system σ leaves σ in the same state as applying the update

events in the order specified by τP .

A crash trace, cP , is a prefix of a valid trace tP that respects

transactional semantics: cP contains the same number of

begin and commit events. Both the empty trace and tP itself

are crash traces of tP . We omit the subscript P from the

notation when the program P is irrelevant or clear in context.

Example 1. To illustrate our model of file systems, events,

and traces, consider the following litmus test:

initial:

f creat("f", 0600)

g creat("g", 0600)

write(f, "0")

write(g, "0")

main:

pwrite(f, "1", 0)

pwrite(g, "1", 0)

fsync(g)

exists?:

content("f") = "0" ^ content("g") = "1"

Suppose that we execute this test on an empty file system

σ (i.e., σ(i) = ? for all identifiers i). The initial setup

updates the abstract state of σ to include the bindings σ(f) =
hb,mi and σ(g) = hb,mi, where b = “0” and m =

{permissions 7! “0600”, . . .}. Assuming that the pwrite

operations generate one write event each, the canonical

trace for the litmus test is τ = [e0, e1, e2], where e0 =
write(f, 0, “1”), e1 = write(g, 0, “1”), and e2 = fsync(g).
The valid traces, besides τ, are t1 = [e1, e0, e2] and t2 =
[e1, e2, e0]. None of the other permutations of τ are valid

traces because they violate barrier semantics. Any prefix of

τ, t1, or t2 forms a crash trace—intuitively, a crash trace

represents the crash of a valid execution at a particular point.

Crash-Consistency Models. A crash-consistency model

(Definition 4) determines which valid program traces are

permissible, and therefore, what file system states may be

observed after a crash. The strongest consistency model is

Sequential Crash-Consistency (SCC) (Definition 5), which

permits no re-ordering of events in the canonical trace. That

is, an execution of a program P may only emit the canonical

trace τP . As a result, the crash behavior of an application

running under SCC is easy to reason about, and it can be

connected directly to program text. SCC can be thought of as

the analogue of sequential consistency for memory models.

Real file systems, however, implement weaker mod-

els (Definition 6), which permit additional valid traces. In

particular, we say that a crash consistency model M1 is

weaker than a model M2 iff M1 permits a superset of the

valid traces permitted by M2 for every program. The model

provided by the ext4 file system, for example, is weaker than

SCC, permitting re-orderings of updates to different files

(among other relaxations). Definition 7 gives an axiomatic

specification of ext4 in our framework, obtained by reading

the documentation and empirically observing its behavior on

litmus tests using FERRITE. As we show in §6, such a speci-

fication clarifies the contract between the application and the

underlying file system, and enables automatic synthesis of a

minimal set of barriers that ensure atomicity and durability

after a crash.

Definition 4 (Crash-Consistency Model). A crash-consistency

model M relates an arbitrary valid trace of a program P to

its canonical trace. We say that M permits tP iff M(tP , τP)
evaluates to true.

Definition 5 (Sequential Crash-Consistency (SCC)). A valid

trace tP of a program P is sequentially crash-consistent iff

tP = τP . That is, SCC(tP , τP) , tP = τP .

Example 2. Consider the litmus test from Example 1.

For this test, SCC permits only the canonical trace τ =
[e0, e1, e2]. No crash trace (i.e., prefix) of τ results in the

specified final state content(f) = “0” ^ content(g) = “1”,

and so the SCC model does not allow the surprising behavior

of this test.

Example 3. FSCQ [14] is a file system that is verified to

be crash-safe: a machine-checkable proof in Coq shows that

FSCQ will always recover correctly after a crash. FSCQ

wraps each POSIX system call into a transaction committed

to a write-ahead log, and so each system call is both atomic

福昕
高亮

福昕
下划线

福昕
高亮

福昕
下划线

福昕
下划线

福昕
高亮

福昕
高亮

福昕
下划线

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
下划线

福昕
下划线

福昕
高亮

福昕
下划线

福昕
高亮

福昕
下划线

福昕
高亮

and persistent. In our formalization, the canonical trace τP
for a program P running on FSCQ includes a begin event

before the sequence of events generated by each system

call, and a commit event after those events. For example, a

write system call on FSCQ may produce the canonical trace

τP = [begin,write0, . . . ,writen, commit] (with one writei
per block). This canonical trace yields only two valid crash

traces: the empty trace and τP itself.

Definition 6 (Weaker Crash-Consistency Model). A crash-

consistency model M1 is weaker than the model M2 iff

M2(tP , τP) =) M1(tP , τP) for every valid trace tP and

its corresponding canonical trace τP .

Definition 7 (ext4 Crash-Consistency). Let tP be a valid

trace and τP the corresponding canonical trace. We say that

tP is ext4 crash-consistent iff ei tP ej for all events

ei, ej such that ei τP ej and at least one of the following

conditions holds:

1. ei and ej are metadata updates to the same file: ei =
setattr(f, ki, vi) and ej = setattr(f, kj , vj).

2. ei and ej are writes to the same block in the same

file: ei = write(f, ai, di), ej = write(f, aj , dj), and

sameBlock(ai, aj), where sameBlock is an implemen-

tation-specific predicate.

3. ei and ej are updates to the same directory: args(ei) \
args(ej) 6= ;, where args(link(i1, i2)) = {i1, i2},

args(unlink(i1)) = {i1}, and args(rename(i1, i2)) =
{i1, i2}.

4. ei is a write and ej is an extend to the same file: ei =
write(f, ai, di) and ej = extend(f, aj , dj , s).

Example 4. Consider again the litmus test from Example 1.

The ext4 crash-consistency model permits every valid trace

(i.e., τ, t1, and t2) of the program. Crash traces (i.e., pre-

fixes) of two of these traces (t1 and t2) satisfy the predicate

content(f) = “0” ^ content(g) = “1”, and so unlike SCC,

ext4 allows the surprising behavior of this test. The program-

mer can ensure that the test exhibits only the SCC behaviors

on ext4 by inserting an fsync(f) barrier after the write to f.

Note that a crash-consistency model does not include

an explicit model of hardware disk behavior. Instead, the

reorderings and caching behaviors of hardware disks are

implicit in the allowed reorderings and in the semantics of

update and synchronization events. In §5, we describe how

FERRITE simulates the intermediate states of the hardware

disk after a crash, and so a crash-consistency model developed

with FERRITE implicitly captures hardware behavior.

4.2 Operational specifications

An operational crash-consistency model takes the form of

a non-deterministic state machine M , which uses idealized

components—maps and tuples—to abstract the implementa-

tion details of real file systems. We model the persistent (on-

disk) and volatile (in-core) state of a file system σ with a tu-

σ
0 = FLUSH(APPLY(P [p], σ))

hσ, pi ! hσ0

, p+ 1i
STEPSEQ

hσ, pi ! hσ,?i
CRASH

Figure 4. An operational model for SCC (Definition 5).

σ
0 = APPLY(P [p], σ)

hσ, pi ! hσ0

, p+ 1i
STEP

hσ, pi ! hσ,?i
CRASH

σ
0 = PARTIALFLUSH(σ)

hσ, pi ! hσ0

, pi
NONDET

Figure 5. A sample of the ext4 operational model.

ple hσinCore, σonDiski, where σinCore and σonDisk are themselves

tuples of the form hσmeta, σdatai, as defined previously (Def-

inition 1). Events update the volatile state of the files they

interact with, occurring in the order specified by the syntax

of a program P . The state machine M non-deterministically

chooses to persist (some of) these updates to disk, or to crash.

Figure 4 shows an example operational specification of

sequential crash-consistency. We model the machine state as

a pair hσ, pi, where σ = hσinCore, σonDiski is the current state

of the file system, and p the program counter (an index into

the program P). The APPLY function executes the semantics

of an event as given in Definition 2. The FLUSH function

flushes the volatile state of all files to disk. The STEPSEQ

rule says that the volatile state is flushed to disk at every

step. In other words, σinCore = σonDisk at any point during

execution. The non-deterministic rule CRASH can halt the

program at any point (denoted by setting the program counter

to ?). It is easy to see that a machine executing these two

rules can only produce the canonical trace (or its prefix) of

any program P .

Figure 5 shows the key rules for an operational specifica-

tion of ext4. The ext4 model permits more non-determinism

than the sequential model: the NONDET rule may transi-

tion without performing the next event in the program. The

PARTIALFLUSH function non-deterministically flushes none,

some, or all of each file in the file system. For space rea-

sons, we omit a full description of the rules for ext4, but in

§6.2, we describe a Dafny-based verifier for application-level

properties that uses this operational crash-consistency model.

5. Making specifications executable

This section describes FERRITE, a suite of automated tools

for reasoning about crash-consistency models. FERRITE con-

sists of two tools—an explicit enumerator and a bounded

model checker—which exhaustively explore all possible

crash behaviors of a litmus test (§3). The enumerator ex-

ecutes litmus tests against actual file system implementations

to determine the set of all possible crash behaviors. The

model checker executes litmus tests symbolically against an

axiomatic specification (§4.1). Together, these tools enable

福昕
高亮

福昕
下划线

福昕
下划线

福昕
高亮

福昕
高亮

福昕
高亮

福昕
下划线

福昕
下划线

福昕
高亮

福昕
下划线

福昕
下划线

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
下划线

福昕
高亮

福昕
高亮

福昕
下划线

福昕
高亮

福昕
高亮

disk commands description

write(blockID , data) write data to a given block

flush() flush disk cache to stable storage

trim(blockID) wipe a given block

mark(label) label externally observable event

Figure 6. Disk commands supported by FERRITE’s virtual

disk; mark is a pseudo-command that corresponds to the

pseudo-function of the same name in litmus tests (see §3.1).

file system developers to create high fidelity specifications

of crash behavior: the model checker ensures that the for-

malizations (dis)allow representative behaviors encoded in

litmus tests, and the enumerator ensures that the litmus tests

are indeed representative of the behavior of the actual file

system implementations.

5.1 Executing tests against file system implementations

The possible reordering behaviors of a file system are often

subtle even to their developers. Prior experience with memory

models has demonstrated the utility of tools such as DIY [3]

that execute litmus tests against real hardware to observe

possible outcomes. To help specification writers understand

the behaviors allowed by a file system, FERRITE includes an

explicit enumerator that executes all possible crash traces of

a litmus test against an actual file system implementation.

The enumerator takes as input a litmus test P and a target

file system, and reports all possible outcomes of P on that file

system, including potential crashes. The system calls made

by P pass through several layers of the I/O stack (Figure 2),

each of which is free to reorder or buffer them according to

its own rules. Eventually, the operating system produces disk

commands, shown in Figure 6, which are sent to the hardware

storage device. The storage device is then free to reorder and

buffer those events according to its own rules. The state of

persistent storage after a crash therefore depends on both

the trace of disk commands and the behavior of the storage

device.

To generate all possible crash states of the test P , FERRITE

needs to observe two sets of traces: (1) all possible sequences

of disk commands sent to the hardware, and (2) all possi-

ble reorderings of those commands made by the hardware.

FERRITE determines the possible sequences of disk com-

mands by executing P many times, as is common for testing

memory models [3, 4]. But producing hardware reorderings

is trickier, since it also requires producing all intermediate

states of the persistent storage in order to simulate crashes.

In particular, interposing on the hardware to inspect interme-

diate states or produce a crash at a certain point would be

expensive and imprecise. Instead, FERRITE abstracts the be-

havior of storage hardware with a disk model, producing only

the command reorderings that satisfy a chosen disk model.

A disk model captures the allowed behaviors of the disk

hardware. FERRITE implements a default disk model that

resembles a disk with a large volatile cache and arbitrary

schedules. Specifically, it allows two disk operations oi and

oj to be reordered unless one of the following is true:

• either oi or oj is a flush;

• oi and oj are changes to the same block;

• oi is a mark command.

Capturing hardware behavior in a disk model allows FERRITE

to easily simulate a crash at any point during P ’s execution,

and observe the resulting intermediate state. This guarantees

that all possible crash states are observed.

The enumerator executes litmus tests by intercepting

system calls and forwarding them to an underlying guest OS

running in QEMU [7]. The guest OS has an attached virtual

disk provided by FERRITE. The target file system, running

in the guest OS, issues disk commands to this virtual disk,

which are forwarded to FERRITE to be recorded in a trace.

Once execution of P is complete, the enumerator produces

all possible reorderings of the trace according to the chosen

disk model, and for each trace, produces all possible prefixes.

Each prefix produces a disk image file that corresponds to

a possible disk state after a crash. The enumerator finally

mounts the disk image as a loopback device in the guest OS

to recover the state of the files written by P . Optionally, the

enumerator can then verify the predicates in the final section

of the litmus test (§3.1) against the possible states. We have

applied enumeration to run litmus tests against file systems

on Linux and FreeBSD, with results presented in §3.5 earlier.

Limitations. The result of the enumerator is dependent on

a particular implementation of the file system and the rest of

the I/O stack. It is useful to show that certain system calls can

be reordered by the file system (assuming QEMU and the I/O

stack are correct). It cannot prove that two system calls must

always be ordered even if it never sees a counter-example in

the output; we cross-validated with documentation and with

file system developers for those cases.

5.2 Executing tests against specifications

Axiomatic specifications of crash consistency are useful only

to the extent that they faithfully capture the behavior of file

system implementations. Prior experience with memory mod-

els [82] has shown that it is easy to accidentally write a

specification that is under-constrained (allowing behaviors

that should be forbidden) or over-constrained (forbidding

behaviors that should be allowed). To help file system devel-

opers avoid these pitfalls when specifying crash-consistency

models, FERRITE includes a model checker that symbolically

executes a litmus test against a specification, ensuring that the

specification (dis)allows the behaviors encoded in the test.

The model checker takes as input a litmus test P (§3)

and an axiomatic specification of a crash-consistency model

M (§4), and checks whether the predicates specified in the

exists? section of the test are satisfied by any execution

of the body. Conceptually, the model checker works by

generating all crash traces of P that are permitted by M

福昕
高亮

福昕
下划线

福昕
下划线

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
下划线

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

; SCC permits no reorderings

(define (SCC-reorder? e1 e2) #f)

; ext4 forbids the reorderings in Definition 7

(define (ext4-reorder? e1 e2)

(and

(not (metadata-same-ino-deps? e1 e2)) ; (1)

(not (same-file-block-deps? e1 e2 BLOCK_SIZE)) ; (2)

(not (dir-same-ino-deps? e1 e2)) ; (3)

(not (file-write-extend-deps? e1 e2)))) ; (4)

Figure 7. Rosette specifications of the reordering rules for

the SCC (Definition 5) and ext4 (Definition 7) models.

(Definition 4), and checking each predicate against that set.

In particular, the checker produces the set of crash traces

T = {cP | cP is a crash trace of tP and M(tP , τP)}, where

τP is the canonical trace of P . Then, it checks whether any

predicate in P is satisfied by some trace in T . If so, the crash-

consistency model M allows some surprising behavior. This

outcome can be cross-checked against the actual file system

implementation using FERRITE to confirm the model is not

too weak.

We implemented the model checker in Rosette [80], a pro-

gramming language that extends Racket [23] with features

for program synthesis and verification, based on an under-

lying SAT or SMT solver [21, 81]. The specification writer

uses Rosette to encode the axiomatic specification of the

crash-consistency model M , and the model checker provides

a simple DSL for expressing the litmus test P . The specifi-

cation M is written simply as a procedure that takes as input

two events from the canonical trace, e1 τP e2, and returns

true iff M allows these two events to be reordered. Figure 7

shows the specifications for the SCC and ext4 models, both

of which are direct translations of Definitions 5 and 7, respec-

tively, into Rosette’s syntax. Given these inputs, the model

checker uses Rosette to symbolically execute P against M ,

relying on the SMT solver to implicitly check P ’s exists?

predicates against the traces permitted by M , as described

above.

We applied the model checker to validate the SCC and

ext4 specifications against our litmus tests (§3). The SCC

specification, by construction, does not permit any of the sur-

prising results in the tests, and our model checker confirmed

this to be the case. The ext4 specification, on the other hand,

is expected to allow some of the litmus tests, since the actual

ext4 implementation does as well (§3.5). The model checker

confirms that the specification behaves like the implemen-

tation on all tests. All of the checks complete within a few

seconds. In general, implementing a SAT/SMT-based tool

that scales to our litmus tests—which manipulate files with

thousands of bytes—would require hand-crafted encodings

and significant time investment (as with the specialized en-

codings [48, 82, 90] for checking litmus tests against memory

models). However, Rosette’s aggressive partial evaluation al-

lows our model checker to scale to these litmus tests without

manual intervention.

6. Experience with specifications

In this section we demonstrate that formal specifications are

useful for building tools that can aid application writers. We

also discuss how applications can benefit from support from

the operating system and hardware.

6.1 Synthesis

Rather than require application writers to manually ensure

crash safety of their programs, formal crash-consistency

specifications allow us to synthesize sufficient barriers for an

implementation so that it satisfies the desired crash-safety

properties. In particular, the application writer develops

the program P assuming sequential crash-consistency. The

synthesizer then transforms P , by inserting a minimal set of

barriers, so that the resulting program P 0 behaves just like P

under a given weaker crash-consistency model, such as ext4.

We built a proof-of-concept synthesizer on top of the

FERRITE model checker described in §5.2. The synthe-

sizer uses Rosette’s implementation [80] of counterexample-

guided inductive synthesis (CEGIS) [73, 74] to generate

candidate programs P 0 and verify that they preserve P ’s guar-

antees on every permitted trace. The synthesizer generates

candidate programs P 0 by inserting new fsync invocations

into P . Moreover, the synthesizer automatically optimizes the

insertion of barriers, such that the program P 0 contains the

minimal number of additional fsync invocations necessary to

guarantee the desired safety properties.

To illustrate, consider the atomic-replace-via-rename

(ARVR) litmus test in §3.4. This program guarantees atom-

icity under SCC. But recall from Figure 3 that it does not

do so on ext4: after a crash, it is possible for “file” to con-

tain neither the old nor the new file contents. To guarantee

atomicity, we must insert additional synchronization. A naive

solution would be to insert an fsync after each call in this

program, but this is unnecessarily conservative and poten-

tially inhibits performance. Our synthesizer instead chooses

to insert an fsync(f) after the write operation. This single

fsync is sufficient to guarantee atomicity for this program on

ext4. The synthesizer automatically generates and verifies

this program in under 30 seconds, with similar performance

on all the other litmus tests in §3. While our synthesizer is a

proof-of-concept, common optimizations (e.g., Fender [37])

would allow it to scale to larger programs.

6.2 Verification

To demonstrate the use of operational crash-consistency

models (§4.2), we developed a verification framework in

Dafny [40] based on our operational model of ext4, and we

applied it to prove crash safety of several small programs.

Dafny proofs in our framework are unbounded, unlike those

produced by the FERRITE model checker. In particular, given

福昕
下划线

福昕
高亮

福昕
高亮

福昕
下划线

福昕
高亮

a procedure that takes as input a file, Dafny proves its crash-

safety with respect to all possible file sizes. FERRITE, in

contrast, expects a bound on the file size, as provided in our

litmus tests.

Our framework models the file system with Dafny’s built-

in strings and maps: files are strings, and directories are

maps. Each system call is simply a procedure with associated

pre- and post-conditions. We express non-determinism using

Dafny’s havoc statements. For example, the CRASH rule in

Figure 5 can be modeled as “if (*) crash();,” where the

havoc statement * means that the given branch is taken non-

deterministically. We similarly use havoc statements to im-

plement non-deterministic flushes (the NONDET rule in Fig-

ure 5) and to represent garbage data. Because Dafny closely

resembles a conventional imperative language, applications

can be implemented in Dafny against our abstract interface,

and extracted to implementations against real file system

interfaces.

We verified crash safety of several small programs us-

ing our Dafny framework. For example, we verified the un-

bounded version of the ARVR litmus test used in synthesis

above. Our framework’s use of Dafny’s language features

made proof automation highly effective: it required only 6

annotations to verify ARVR.

6.3 OS support

Recent research in memory consistency models [1] designs

programming abstractions that hide the details of memory

reordering where possible (using concurrency libraries), but

exposing them when necessary for peak performance (such as

through C11 atomics). In addition to providing a basis for syn-

thesis and verification tools, crash-consistency models also

suggest a similar design for programming abstractions that

offer crash-consistency guarantees. This section discusses

two such interfaces. The first is a simple interface to expose

the key characteristics of a file system’s crash-consistency

behavior to the application, akin to C11 atomics. The second

is a radical design that provides applications with sequen-

tial crash-consistency (SCC) guarantees. We prototyped both

designs using our litmus tests and Dafny verification frame-

work.

Exposing file system characteristics. File system develop-

ers often hesitate to promise strong crash-consistency guar-

antees. Instead, many applications try to exploit the char-

acteristics of specific file systems and implement per-file-

system optimizations. Consider the following code snippet

from GNOME [45], which skips an fsync call for replace-via-

rename if the file system magic number is a known constant:

struct statfs buf;

fstatfs(fd, &buf);

if (buf.f_type == BTRFS_SUPER_MAGIC || buf.f_type == ...)

// ... skip fsync(fd) ...

This practice is risky because the file system’s behavior may

depend on specific versions or mount options, which applica-

tions can easily overlook. One solution is to provide interfaces

for applications to query the possible behaviors of the current

file system. For example, a flag could expose whether the file

system guarantees atomic replace-via-rename (§3):

if (buf.f_charcs & FC_ATOMIC_REPLACE_VIA_RENAME) ...

Applications can then make their optimizations and expec-

tations explicit, making them more portable and easier to

reason about. We implemented a prototype on Linux by ex-

posing such information through the reserved bits of statfs.

§7 discusses other proposed high-level interfaces (e.g., file

system transactions and barriers).

End-to-end I/O stack. Reasoning about crash consistency

is made difficult by the complexity of the I/O stack, as shown

in §2.2. An alternative approach, embraced by exokernel

designs [22, 34], is to reduce or eliminate the kernel from

the I/O path. While these designs focus on improving end-to-

end performance, we believe that they can also offer better

reliability and more explicit crash-consistency guarantees.

As a demonstration, we implemented a prototype I/O

stack by porting the persistent log and a megaraid driver

from the Arrakis operating system [60] to Linux. It has a

small code base—200 LOC for the log and 4,000 LOC for the

driver—and completely bypasses the existing file system I/O

stack. The persistent log provides strong crash-consistency

guarantees: log entries reach disk in same order as they

are appended, and applications will see only complete log

entries after the system crashes. We derived a formal proof

of the properties of the persistent log implementation using

Dafny (with 25 annotations). To measure performance, we

modified LevelDB 1.18 to use the log and measured the

time to append 100,000 Put(key, val) entries to the log; the

backend was an LSI Logic MegaRAID SAS-3 3108 RAID

controller. The time reduced from 14.4 s on ext4 to 4 s when

using the log. We believe that this is a promising direction

to build end-to-end storage systems with well-defined crash

behavior.

7. Related work

Our work is motivated by past research that finds crash-safety

bugs in both applications and file systems, that explores better

programming abstractions for crash safety, and that provides

formal models of file systems.

Bugs in storage systems. Storage systems need to tolerate

system crashes and are difficult to get right [47, 64]. Tech-

niques such as model checking [88, 89] and static analy-

sis [70] have been proven to be effective in finding bugs in

applications and file systems. FERRITE differs from these

tools in two ways. First, it does not focus on finding bugs in

file systems. Rather, §3.5 shows incorrect or imprecise crash

models used in previous work (i.e., bugs in their models).

Second, Ferrite presents the first formalization of file system

crash-consistency models; these models can be used with

automated reasoning tools, as we showed through synthesis

福昕
高亮

福昕
下划线

福昕
高亮

福昕
高亮

福昕
高亮

福昕
下划线

福昕
下划线

福昕
高亮

福昕
高亮

福昕
高亮

and verification in §6. The models in previous work are not

formal models and cannot be used this way.

FERRITE was inspired by recent work from Pillai et al. [62]

and Zheng et al. [92] on crash-safety bugs. Their work

showed that even applications carefully designed and en-

gineered to tolerate crashes may be vulnerable to data losses,

and that it remains challenging to develop crash-safe applica-

tions on top of POSIX file systems.

A major challenge for both application writers and file sys-

tem developers is that the POSIX file interface under-specifies

crash behaviors, leading to conflicting interpretations. Our

crash-consistency models address this challenge by providing

litmus tests and formal specifications for precisely describing

crash behavior. Precise, formal models clarify misinterpreta-

tions and provide a basis for automated reasoning tools.

Formal specification and verification of file systems. Sev-

eral projects have explored formally specifying and verifying

file systems. Bevier et al. specified the Synergy file system

in Z [9] and verified its implementation in ACL2 [8]. Kang

and Jackson used Alloy [35] to model a file system for flash-

based storage devices, with a focus on flash-specific features

such as wear leveling. Wenzel used Isabelle/HOL [86] to

formalize common Unix file system abstractions and reason

about their security properties. The Commuter tool [18] for-

malizes the commutativity of the POSIX interface and studies

its scalability implications. SibylFS [66] is a recent effort in

formalizing POSIX and testing implementation conformance.

To our knowledge, we propose the first formal framework

for describing crash-consistency behaviors of POSIX file sys-

tems. On the other hand, our framework focuses on crash

consistency, and we do not model POSIX details such as

permissions and symbolic links.

Another line of work is applying formal verification to

implementing a POSIX-like file system [33]. On-going work

includes BilbyFs [36], FSCQ [14], and Schellhorn et al.’s

verified flash file system [71]. It would be interesting to apply

our framework to analyzing the crash-consistency guarantees

of these file systems once they are complete and available.

File system interfaces. One limitation of POSIX is that

applications have to resort to expensive fsync calls to express

ordering requirements even when they do not need durability.

Kernel developers have proposed to extend Linux with an

fbarrier system call [20] to improve performance for such

applications. Other extensions to better support ordering

include Featherstitch [24], OptFS [16], and xsyncfs [57].

A number of proposals offer transactional semantics for

file system operations [52, 59, 63, 65, 76, 85, 87]. Emerging

storage devices provide new hardware primitives, such as

Fusion-io’s multi-block atomic writes and new SCSI com-

mands (ATOMIC WRITE and draft SCATTERED WRITE),

that could be used to simplify file system implementations

and provide stronger crash-consistency guarantees [32, 53].

Memory consistency models. Development and analysis of

memory consistency models is an active area of research, and

our approach draws on the general themes and ideas from this

work. A memory model determines the semantics of reads

in a multi-threaded shared-memory system; in particular, it

specifies which writes to a memory location a given read may

observe. Memory models are described through a combina-

tion of litmus tests (e.g., [3, 4]), axiomatic specifications (e.g.,

[2, 82, 90]), and operational specifications (e.g., [12, 91]). Lit-

mus tests have the advantage of being easy to understand;

operational models offer a direct basis for building simulation

tools; and axiomatic models are best suited for formal reason-

ing and concise descriptions of complex systems (e.g., [49]).

Many tools have been developed to check that these forms

of specification agree with each other (e.g., [48, 82, 90]), as

well as with the behavior exhibited by hardware (e.g., [4]).

Compared to memory models, crash-consistency models

have simpler ordering constraints: all possible program behav-

iors can be described in terms of reorderings of a canonical

trace. Memory models, in contrast, generally involve con-

straints over many ordering relations [2] and even many spec-

ulative executions [49]. On the other hand, crash-consistency

models involve richer data structures, such as files and direc-

tories, and the notion of crashes.

8. Conclusion

The guarantees that file systems should provide in the face of

crashes are under-specified by the POSIX standard, leaving

application writers to guess how to achieve data integrity

and improve performance. This paper showed that crash-

consistency models, in the form of litmus tests and formal

specifications, effectively describe the contract between the

file system and the application. We presented FERRITE, a

toolkit for constructing crash-consistency models by explor-

ing the possible crash behaviors of a file system. While de-

veloping models for common file systems, we identified and

clarified several widely misunderstood guarantees in the liter-

ature.

Crash-consistency models enable tools for writing crash-

safe applications. We demonstrated proof-of-concept syn-

thesis and verification tools, and discussed opportunities for

improved programming interfaces that build on these models.

We hope that both file system developers and application

writers can benefit from precise specifications of crash be-

havior. All of FERRITE’s source code is publicly available at:

http://sandcat.cs.washington.edu/ferrite.

Acknowledgments

We thank Zach Tatlock, our shepherd Joseph Tucek, and the

anonymous reviewers for feedback on earlier versions of this

paper. This work was supported in part by NSF under grant

#1064497, by DARPA under contract FA8750-16-2-0032,

and by a gift from the VMware University Research Fund.

http://sandcat.cs.washington.edu/ferrite
福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

References

[1] S. V. Adve and H.-J. Boehm. Memory models: A case for

rethinking parallel languages and hardware. Communications

of the ACM, 53(8):90–101, Aug. 2010.

[2] J. Alglave. A formal hierarchy of weak memory models.

Formal Methods in System Design, 41(2):178–210, Oct. 2012.

[3] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell. Fences

in weak memory models. In Proceedings of the 22nd Inter-

national Conference on Computer Aided Verification (CAV),

pages 258–272, Edinburgh, UK, July 2010.

[4] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell. Litmus:

Running tests against hardware. In Proceedings of the 17th

International Conference on Tools and Algorithms for the Con-

struction and Analysis of Systems, pages 41–44, Saarbrücken,

Germany, Mar.–Apr. 2011.

[5] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau. Operating

Systems: Three Easy Pieces. Arpaci-Dusseau Books, 0.90

edition, Mar. 2015.

[6] Austin Group. 0000672: Necessary step(s) to synchronize file-

name operations on disk, 2013. http://austingroupbugs.

net/view.php?id=672.

[7] F. Bellard. QEMU, a fast and portable dynamic translator. In

Proceedings of the 2005 USENIX Annual Technical Confer-

ence, pages 41–46, Anaheim, CA, Apr. 2005.

[8] W. R. Bevier and R. M. Cohen. An executable model of the

synergy file system. Technical Report 121, Computational

Logic, Inc., Oct. 1996.

[9] W. R. Bevier, R. M. Cohen, and J. Turner. A specification for

the synergy file system. Technical Report 120, Computational

Logic, Inc., Sept. 1995.

[10] N. Boichat. Issue 502898: ext4: Filesystem corruption on

panic, June 2015. https://code.google.com/p/chromium/

issues/detail?id=502898.

[11] J. Bonwick. ZFS: The last word in filesystems, Oct.

2005. https://blogs.oracle.com/bonwick/entry/zfs_

the_last_word_in.

[12] G. Boudol and G. Petri. Relaxed memory models: An opera-

tional approach. In Proceedings of the 36th ACM Symposium

on Principles of Programming Languages (POPL), pages 392–

403, Savannah, GA, Jan. 2009.

[13] Btrfs. What are the crash guarantees of overwrite-by-rename?

https://btrfs.wiki.kernel.org/index.php/FAQ.

[14] H. Chen, D. Ziegler, T. Chajed, A. Chlipala, M. F. Kaashoek,

and N. Zeldovich. Using Crash Hoare Logic for certifying the

FSCQ file system. In Proceedings of the 25th ACM Symposium

on Operating Systems Principles (SOSP), Monterey, CA, Oct.

2015.

[15] V. Chidambaram, T. Sharma, A. C. Arpaci-Dusseau, and

R. H. Arpaci-Dusseau. Consistency without ordering. In

Proceedings of the 10th USENIX Conference on File and

Storage Technologies (FAST), pages 101–116, San Jose, CA,

Feb. 2012.

[16] V. Chidambaram, T. S. Pillai, A. C. Arpaci-Dusseau, and R. H.

Arpaci-Dusseau. Optimistic crash consistency. In Proceedings

of the 24th ACM Symposium on Operating Systems Princi-

ples (SOSP), pages 228–243, Farmington, PA, Nov. 2013.

[17] H. Chu. MDB: A memory-mapped database and backend

for OpenLDAP. In Proceedings of the 3rd International

Conference on LDAP, Heidelberg, Germany, Oct. 2011.

[18] A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T. Morris,

and E. Kohler. The scalable commutativity rule: Designing

scalable software for multicore processors. In Proceedings

of the 24th ACM Symposium on Operating Systems Princi-

ples (SOSP), pages 1–17, Farmington, PA, Nov. 2013.

[19] J. Corbet. ext4 and data loss, Mar. 2009. http://lwn.net/

Articles/322823/.

[20] J. Corbet. That massive filesystem thread, Mar. 2009. https:

//lwn.net/Articles/326471/.

[21] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In

Proceedings of the 14th International Conference on Tools and

Algorithms for the Construction and Analysis of Systems, pages

337–340, Budapest, Hungary, Mar.–Apr. 2008.

[22] D. R. Engler, M. F. Kaashoek, and J. W. O’Toole. Exokernel:

An operating system architecture for application-level resource

management. In Proceedings of the 15th ACM Symposium on

Operating Systems Principles (SOSP), pages 251–266, Copper

Mountain, CO, Dec. 1995.

[23] M. Flatt and PLT. Reference: Racket. Technical Report PLT-

TR-2010-1, PLT Design Inc., 2010. http://racket-lang.

org/.

[24] C. Frost, M. Mammarella, E. Kohler, A. de los Reyes, S. Hov-

sepian, A. Matsuoka, and L. Zhang. Generalized file system

dependencies. In Proceedings of the 21st ACM Symposium on

Operating Systems Principles (SOSP), pages 307–320, Steven-

son, WA, Oct. 2007.

[25] G. R. Ganger and Y. N. Patt. Metadata update performance in

file systems. In Proceedings of the 1st Symposium on Operating

Systems Design and Implementation (OSDI), pages 49–60,

Monterey, CA, Nov. 1994.

[26] D. Giampaolo. Practical File System Design with the BE File

System. Morgan Kaufmann Publishers, 1999.

[27] J. Gray. Notes on data base operating systems. In Operat-

ing Systems, An Advanced Course, pages 393–481. Springer-

Verlag, 1977.

[28] R. Hagmann. Reimplementing the cedar file system using

logging and group commit. In Proceedings of the 11th ACM

Symposium on Operating Systems Principles (SOSP), pages

155–162, Austin, TX, Nov. 1987.

[29] D. Hitz, J. Lau, and M. Malcolm. File system design for an

NFS file server appliance. In Proceedings of the Winter 1994

USENIX Technical Conference, San Francisco, CA, Jan. 1994.

[30] IEEE and The Open Group. The open group base specifications

issue 7, 2013.

[31] Intel Corporation. Intel 64 and IA-32 Architectures Software

Developer’s Manual, 2015. rev. 57.

[32] W. K. Josephson, L. A. Bongo, D. Flynn, and K. Li. DFS: A file

system for virtualized flash storage. In Proceedings of the 8th

USENIX Conference on File and Storage Technologies (FAST),

pages 1–15, San Jose, CA, Feb. 2010.

http://austingroupbugs.net/view.php?id=672
http://austingroupbugs.net/view.php?id=672
https://code.google.com/p/chromium/issues/detail?id=502898
https://code.google.com/p/chromium/issues/detail?id=502898
https://blogs.oracle.com/bonwick/entry/zfs_the_last_word_in
https://blogs.oracle.com/bonwick/entry/zfs_the_last_word_in
https://btrfs.wiki.kernel.org/index.php/FAQ
http://lwn.net/Articles/322823/
http://lwn.net/Articles/322823/
https://lwn.net/Articles/326471/
https://lwn.net/Articles/326471/
http://racket-lang.org/
http://racket-lang.org/
福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

[33] R. Joshi and G. J. Holzmann. A mini challenge: Build a

verifiable filesystem. Formal Aspects of Computing, 19(2):

269–272, June 2007.

[34] M. F. Kaashoek, D. R. Engler, G. R. Ganger, H. M. Briceño,

R. Hunt, D. Mazières, T. Pinckney, R. Grimm, J. Jannotti,

and K. Mackenzie. Application performance and flexibility

on exokernel systems. In Proceedings of the 16th ACM

Symposium on Operating Systems Principles (SOSP), pages

52–65, Saint-Malo, France, Oct. 1997.

[35] E. Kang and D. Jackson. Formal modeling and analysis of

a Flash filesystem in Alloy. In Proceedings of the 1st Int’l

Conference of Abstract State Machines, B and Z, pages 294–

308, London, UK, Sept. 2008.

[36] G. Keller, T. Murray, S. Amani, L. O’Connor, Z. Chen,

L. Ryzhyk, G. Klein, and G. Heiser. File systems deserve

verification too. In Proceedings of the 7th Workshop on Pro-

gramming Languages and Operating Systems, Farmington, PA,

Nov. 2013.

[37] M. Kuperstein, M. Vechev, and E. Yahav. Automatic inference

of memory fences. In Proceedings of 10th International

Conference on Formal Methods in Computer-Aided Design,

pages 111–120, Lugano, Switzerland, Oct. 2010.

[38] L. Lamport. How to make a multiprocessor computer that

correctly executes multiprocess programs. IEEE Transactions

on Computers, 26(9):690–691, Sept. 1979.

[39] C. Lee, D. Sim, J.-Y. Hwang, and S. Cho. F2FS: A new file

system for flash storage. In Proceedings of the 13th USENIX

Conference on File and Storage Technologies (FAST), pages

273–286, Santa Clara, CA, Feb. 2015.

[40] K. R. M. Leino. Dafny: An automatic program verifier for

functional correctness. In Proceedings of the 16th International

Conference on Logic for Programming, Artificial Intelligence

and Reasoning (LPAR), pages 348–370, Dakar, Senegal, Apr.–

May 2010.

[41] Linux kernel. Bug 15910 - zero-length files and performance

degradation, 2010. https://bugzilla.kernel.org/show_

bug.cgi?id=15910.

[42] Linux kernel. Ext4 filesystem, 2015. https://www.kernel.

org/doc/Documentation/filesystems/ext4.txt.

[43] Linux man-pages. close - close a file descriptor, 2013. http:

//man7.org/linux/man-pages/man2/close.2.html.

[44] R. A. Lorie. Physical integrity in a large segmented database.

ACM Transactions on Database Systems, 2(1):91–104, Mar.

1977.

[45] R. Lortie. more on dconf performance, btrfs and fsync,

Dec. 2010. https://blogs.gnome.org/desrt/2010/12/

19/more-on-dconf-performance-btrfs-and-fsync/.

[46] R. Lortie. ext4 file replace guarantees, June 2013. http:

//www.spinics.net/lists/linux-ext4/msg38774.html.

[47] L. Lu, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and S. Lu.

A study of Linux file system evolution. In Proceedings of

the 11th USENIX Conference on File and Storage Technolo-

gies (FAST), pages 31–44, San Jose, CA, Feb. 2013.

[48] S. Mador-Haim, R. Alur, and M. M. K. Martin. Generating

litmus tests for contrasting memory consistency models. In

Proceedings of the 22nd International Conference on Com-

puter Aided Verification (CAV), pages 273–287, Edinburgh,

UK, July 2010.

[49] J. Manson, W. Pugh, and S. V. Adve. The Java memory model.

In Proceedings of the 32nd ACM Symposium on Principles

of Programming Languages (POPL), pages 378–391, Long

Beach, CA, Jan. 2005.

[50] M. K. McKusick. Journaled soft-updates. In BSDCan, Ottawa,

Canada, May 2010.

[51] M. K. McKusick and T. J. Kowalski. Fsck: The UNIX file sys-

tem check program. UNIX System Manager’s Manual (SMM),

Oct. 1996.

[52] Microsoft. Alternatives to using Transactional NTFS,

2015. https://msdn.microsoft.com/en-us/library/

windows/desktop/bb968806(v=vs.85).aspx.

[53] C. Min, W.-H. Kang, T. Kim, S.-W. Lee, and Y. I. Eom.

Lightweight application-level crash consistency on transac-

tional flash storage. In Proceedings of the 2015 USENIX An-

nual Technical Conference, pages 221–234, Santa Clara, CA,

July 2015.

[54] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz.

ARIES: A transaction recovery method supporting fine-

granularity locking and partial rollbacks using write-ahead

logging. ACM Transactions on Database Systems, 17(1):94–

162, Mar. 1992.

[55] Mozilla. Bug 421482 - Firefox 3 uses fsync excessively,

2008–2015. https://bugzilla.mozilla.org/show_bug.

cgi?id=421482.

[56] S. Neumann. Re: fsync in glib/gio, Mar. 2009.

https://mail.gnome.org/archives/gtk-devel-list/

2009-March/msg00098.html.

[57] E. B. Nightingale, K. Veeraraghavan, P. M. Chen, and J. Flinn.

Rethink the sync. In Proceedings of the 7th Symposium on

Operating Systems Design and Implementation (OSDI), pages

1–14, Seattle, WA, Nov. 2006.

[58] Open Group. fsync - synchronise changes to a file. The

Single UNIX Specification, Version 2, 1997. http://pubs.

opengroup.org/onlinepubs/7908799/xsh/fsync.html.

[59] S. Park, T. Kelly, and K. Shen. Failure-atomic msync(): A

simple and efficient mechanism for preserving the integrity of

durable data. In Proceedings of the ACM EuroSys Conference,

pages 225–238, Prague, Czech Republic, Apr. 2013.

[60] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krish-

namurthy, T. Anderson, and T. Roscoe. Arrakis: The operat-

ing system is the control plane. In Proceedings of the 11th

Symposium on Operating Systems Design and Implementa-

tion (OSDI), pages 1–16, Broomfield, CO, Oct. 2014.

[61] T. S. Pillai, V. Chidambaram, J.-Y. Hwang, A. C. Arpaci-

Dusseau, and R. H. Arpaci-Dusseau. Towards efficient,

portable application-level consistency. In Proceedings of the

9th Workshop on Hot Topics in Dependable Systems, Farming-

ton, PA, Nov. 2013.

[62] T. S. Pillai, V. Chidambaram, R. Alagappan, S. Al-Kiswany,

A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. All file

systems are not created equal: On the complexity of craft-

ing crash-consistent applications. In Proceedings of the 11th

https://bugzilla.kernel.org/show_bug.cgi?id=15910
https://bugzilla.kernel.org/show_bug.cgi?id=15910
https://www.kernel.org/doc/Documentation/filesystems/ext4.txt
https://www.kernel.org/doc/Documentation/filesystems/ext4.txt
http://man7.org/linux/man-pages/man2/close.2.html
http://man7.org/linux/man-pages/man2/close.2.html
https://blogs.gnome.org/desrt/2010/12/19/more-on-dconf-performance-btrfs-and-fsync/
https://blogs.gnome.org/desrt/2010/12/19/more-on-dconf-performance-btrfs-and-fsync/
http://www.spinics.net/lists/linux-ext4/msg38774.html
http://www.spinics.net/lists/linux-ext4/msg38774.html
https://msdn.microsoft.com/en-us/library/windows/desktop/bb968806(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb968806(v=vs.85).aspx
https://bugzilla.mozilla.org/show_bug.cgi?id=421482
https://bugzilla.mozilla.org/show_bug.cgi?id=421482
https://mail.gnome.org/archives/gtk-devel-list/2009-March/msg00098.html
https://mail.gnome.org/archives/gtk-devel-list/2009-March/msg00098.html
http://pubs.opengroup.org/onlinepubs/7908799/xsh/fsync.html
http://pubs.opengroup.org/onlinepubs/7908799/xsh/fsync.html
福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

Symposium on Operating Systems Design and Implementa-

tion (OSDI), pages 433–448, Broomfield, CO, Oct. 2014.

[63] D. E. Porter, O. S. Hofmann, C. J. Rossbach, A. Benn, and

E. Witchel. Operating systems transactions. In Proceedings

of the 22nd ACM Symposium on Operating Systems Princi-

ples (SOSP), pages 161–176, Big Sky, MT, Oct. 2009.

[64] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-

Dusseau. Model-based failure analysis of journaling file

systems. In Proceedings of the 35th Annual IEEE/IFIP

International Conference on Dependable Systems and Net-

works (DSN), pages 802–811, Yokohama, Japan, June–July

2005.

[65] V. Prabhakaran, T. L. Rodeheffer, and L. Zhou. Transactional

flash. In Proceedings of the 8th Symposium on Operating

Systems Design and Implementation (OSDI), pages 147–160,

San Diego, CA, Dec. 2008.

[66] T. Ridge, D. Sheets, T. Tuerk, A. Giugliano, A. Madhavapeddy,

and P. Sewell. SibylFS: formal specification and oracle-based

testing for POSIX and real-world file systems. In Proceedings

of the 25th ACM Symposium on Operating Systems Princi-

ples (SOSP), Monterey, CA, Oct. 2015.

[67] D. M. Ritchie and K. Thompson. The UNIX time-sharing

system. Communications of the ACM, 17(7):365–375, July

1974.

[68] O. Rodeh, J. Bacik, and C. Mason. BTRFS: The Linux B-tree

filesystem. ACM Transactions on Storage, 9(3), Aug. 2013.

[69] M. Rosenblum and J. Ousterhout. The design and implementa-

tion of a log-structured file system. In Proceedings of the 13th

ACM Symposium on Operating Systems Principles (SOSP),

pages 1–15, Pacific Grove, CA, Oct. 1991.

[70] C. Rubio-González, H. S. Gunawi, B. Liblit, R. H. Arpaci-

Dusseau, and A. C. Arpaci-Dusseau. Error propagation analy-

sis for file systems. In Proceedings of the 2009 ACM SIGPLAN

Conference on Programming Language Design and Implemen-

tation (PLDI), pages 270–280, Dublin, Ireland, June 2009.

[71] G. Schellhorn, G. Ernst, J. Pfähler, D. Haneberg, and W. Reif.

Development of a verified flash file system. In Proceedings of

the 4th International ABZ Conference, pages 9–24, Toulouse,

France, June 2014.

[72] K. Shen, S. Park, and M. Zhu. Journaling of journal is (almost)

free. In Proceedings of the 12th USENIX Conference on File

and Storage Technologies (FAST), pages 287–293, Santa Clara,

CA, Feb. 2014.

[73] A. Solar-Lezama. Program synthesis by sketching. PhD thesis,

University of California, Berkeley, 2008.

[74] A. Solar-Lezama, L. Tancau, R. Bodik, V. Saraswat, and S. Se-

shia. Combinatorial sketching for finite programs. In Proceed-

ings of the 12th International Conference on Architectural Sup-

port for Programming Languages and Operating Systems (AS-

PLOS), pages 404–415, San Jose, CA, Oct. 2006.

[75] D. J. Sorin, M. D. Hill, and D. A. Wood. A Primer on Memory

Consistency and Cache Coherence. Morgan & Claypool, 2011.

[76] R. P. Spillane, S. Gaikwad, M. Chinni, E. Zadok, and C. P.

Wright. Enabling transactional file access via lightweight ker-

nel extensions. In Proceedings of the 7th USENIX Conference

on File and Storage Technologies (FAST), pages 29–42, San

Francisco, CA, Feb. 2009.

[77] SQLite. Atomic commit in SQLite, 2013. https://www.

sqlite.org/atomiccommit.html.

[78] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto,

and G. Peck. Scalability in the XFS file system. In Proceedings

of the 1996 USENIX Annual Technical Conference, San Diego,

CA, Jan. 1996.

[79] The Open Group. Technical standard: Extended API set part 2,

Oct. 2006.

[80] E. Torlak and R. Bodik. A lightweight symbolic virtual

machine for solver-aided host languages. In Proceedings

of the 2014 ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI), pages 530–541,

Edinburgh, UK, June 2014.

[81] E. Torlak and D. Jackson. Kodkod: A relational model finder.

In Proceedings of the 13th International Conference on Tools

and Algorithms for the Construction and Analysis of Systems,

pages 632–647, Braga, Portugal, Mar.–Apr. 2007.

[82] E. Torlak, M. Vaziri, and J. Dolby. MemSAT: Checking

axiomatic specifications of memory models. In Proceedings

of the 2010 ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI), pages 341–350,

Toronto, Canada, June 2010.

[83] L. Tung. Bitcoin developers offer $10,000 virtual bounty to fix

mystery Mac bug, Nov. 2013. http://goo.gl/Ssbj8T.

[84] Ubuntu. Bug #317781: Ext4 data loss, Jan. 2009.

https://bugs.launchpad.net/ubuntu/+source/linux/

+bug/317781.

[85] R. Verma, A. A. Mendez, S. Park, S. Mannarswamy, T. Kelly,

and C. B. M. III. Failure-atomic updates of application data

in a Linux file system. In Proceedings of the 13th USENIX

Conference on File and Storage Technologies (FAST), pages

203–211, Santa Clara, CA, Feb. 2015.

[86] M. Wenzel. Some aspects of Unix file-system security,

Aug. 2014. http://isabelle.in.tum.de/library/HOL/

HOL-Unix/Unix.html.

[87] C. P. Wright, R. Spillane, G. Sivathanu, and E. Zadok. Extend-

ing ACID semantics to the file system. ACM Transactions on

Storage, 3(2):1–42, June 2007.

[88] J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Using model

checking to find serious file system errors. In Proceedings

of the 6th Symposium on Operating Systems Design and

Implementation (OSDI), pages 273–287, San Francisco, CA,

Dec. 2004.

[89] J. Yang, P. Twohey, D. Engler, and M. Musuvathi. EXPLODE: A

lightweight, general system for finding serious storage system

errors. In Proceedings of the 7th Symposium on Operating

Systems Design and Implementation (OSDI), pages 131–146,

Seattle, WA, Nov. 2006.

[90] Y. Yang, G. Gopalakrishnan, G. Lindstrom, and K. Slind.

Nemos: a framework for axiomatic and executable specifi-

cations of memory consistency models. In IPDPS, 2004.

[91] Y. Yang, G. Gopalakrishnan, and G. Lindstrom. UMM: An

operational memory model specification framework with inte-

https://www.sqlite.org/atomiccommit.html
https://www.sqlite.org/atomiccommit.html
http://goo.gl/Ssbj8T
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/317781
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/317781
http://isabelle.in.tum.de/library/HOL/HOL-Unix/Unix.html
http://isabelle.in.tum.de/library/HOL/HOL-Unix/Unix.html
福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

福昕
高亮

grated model checking capability. Concurrency and Computa-

tion: Practice & Experience, 17:465–487, Apr. 2005.

[92] M. Zheng, J. Tucek, D. Huang, F. Qin, M. Lillibridge, E. S.

Yang, B. W. Zhao, and S. Singh. Torturing databases for fun

and profit. In Proceedings of the 11th Symposium on Operating

Systems Design and Implementation (OSDI), pages 449–464,

Broomfield, CO, Oct. 2014.

福昕
高亮

	Introduction
	Background
	The POSIX file system interface
	Out-of-order writes
	Assumptions

	Litmus tests
	Specifying litmus tests
	Litmus tests for file operations
	Litmus tests for directory operations
	Litmus tests for file-directory operations
	Characterizing file systems with litmus tests

	Formal specifications
	Axiomatic specifications
	Operational specifications

	Making specifications executable
	Executing tests against file system implementations
	Executing tests against specifications

	Experience with specifications
	Synthesis
	Verification
	OS support

	Related work
	Conclusion

